Bethie commited on
Commit
745d42a
verified
1 Parent(s): 0259e67

Upload code quantize int8 ONNX weight.

Browse files
Files changed (1) hide show
  1. quantize_int8_test.py +113 -0
quantize_int8_test.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import onnx
4
+ from pathlib import Path
5
+ from diffusers import DiffusionPipeline, StableDiffusionPipeline
6
+ import torch
7
+ from utilities import load_calib_prompts
8
+ from utilities import get_smoothquant_config
9
+ import ammo.torch.quantization as atq
10
+ import ammo.torch.opt as ato
11
+ from utilities import filter_func, quantize_lvl
12
+
13
+ # pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
14
+ # torch_dtype=torch.float16,
15
+ # use_safetensors=True,
16
+ # variant="fp16")
17
+
18
+ pipeline = StableDiffusionPipeline.from_pretrained("wyyadd/sd-1.5", torch_dtype=torch.float16)
19
+
20
+ pipeline.to("cuda")
21
+ # pipeline.enable_xformers_memory_efficient_attention()
22
+ # pipeline.enable_vae_slicing()
23
+
24
+ BATCH_SIZE = 4
25
+ cali_prompts = load_calib_prompts(batch_size=BATCH_SIZE, calib_data_path="./calibration-prompts.txt")
26
+
27
+ quant_config = get_smoothquant_config(pipeline.unet, quant_level=3.0)
28
+
29
+ def do_calibrate(base, calibration_prompts, **kwargs):
30
+ for i_th, prompts in enumerate(calibration_prompts):
31
+ print(prompts)
32
+ if i_th >= kwargs["calib_size"]:
33
+ return
34
+ base(
35
+ prompt=prompts,
36
+ num_inference_steps=kwargs["n_steps"],
37
+ negative_prompt=[
38
+ "normal quality, low quality, worst quality, low res, blurry, nsfw, nude"
39
+ ]
40
+ * len(prompts),
41
+ ).images
42
+
43
+ def calibration_loop():
44
+ do_calibrate(
45
+ base=pipeline,
46
+ calibration_prompts=cali_prompts,
47
+ calib_size=384,
48
+ n_steps=50,
49
+ )
50
+
51
+
52
+ quantized_model = atq.quantize(pipeline.unet, quant_config, forward_loop = calibration_loop)
53
+ ato.save(quantized_model, 'base.unet15_2.int8.pt')
54
+
55
+ quantize_lvl(quantized_model, quant_level=3.0)
56
+ atq.disable_quantizer(quantized_model, filter_func)
57
+
58
+ device1 = "cpu"
59
+ quantized_model = quantized_model.to(torch.float32).to(device1)
60
+
61
+ #Export model
62
+ sample = torch.randn((1, 4, 128, 128), dtype=torch.float32, device=device1)
63
+ timestep = torch.rand(1, dtype=torch.float32, device=device1)
64
+ encoder_hidden_state = torch.randn((1, 77, 768), dtype=torch.float32, device=device1)
65
+
66
+ import onnx
67
+ from pathlib import Path
68
+
69
+ output_path = Path('/home/tiennv/trang/Convert-_Unet_int8_Rebuild/Diffusion/onnx_unet15')
70
+ output_path.mkdir(parents=True, exist_ok=True)
71
+
72
+ dummy_inputs = (sample, timestep, encoder_hidden_state)
73
+
74
+ onnx_output_path = output_path / "unet" / "model.onnx"
75
+ onnx_output_path.parent.mkdir(parents=True, exist_ok=True)
76
+
77
+
78
+ # to cpu to export onnx
79
+ # from onnx_utils import ammo_export_sd
80
+ # base.unet.to(torch.float32).to("cpu")
81
+ # ammo_export_sd(base, 'onnx_dir', 'stabilityai/stable-diffusion-xl-base-1.0')
82
+
83
+ torch.onnx.export(
84
+ quantized_model,
85
+ dummy_inputs,
86
+ str(onnx_output_path),
87
+ export_params=True,
88
+ opset_version=18,
89
+ do_constant_folding=True,
90
+ input_names=['sample', 'timestep', 'encoder_hidden_state'],
91
+ output_names=['predict_noise'],
92
+ dynamic_axes={
93
+ "sample": {0: "B", 2: "W", 3: 'H'},
94
+ "encoder_hidden_state": {0: "B", 1: "S", 2: 'D'},
95
+ "predict_noise": {0: 'B', 2: "W", 3: 'H'}
96
+ }
97
+ )
98
+
99
+ # T峄慽 瓢u h贸a v脿 l瓢u m么 h矛nh ONNX
100
+ unet_opt_graph = onnx.load(str(onnx_output_path))
101
+ unet_optimize_path = output_path / "unet_optimize"
102
+ unet_optimize_path.mkdir(parents=True, exist_ok=True)
103
+ unet_optimize_file = unet_optimize_path / "model.onnx"
104
+
105
+ onnx.save_model(
106
+ unet_opt_graph,
107
+ str(unet_optimize_file),
108
+ save_as_external_data=True,
109
+ all_tensors_to_one_file=True,
110
+ location="weights.pb",
111
+ )
112
+
113
+