Run pipeline
Browse files
code_inference/run_controlnext.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import argparse
|
7 |
+
from diffusers import DDPMScheduler
|
8 |
+
|
9 |
+
from pipeline_sdxl_ipadapter import StableDiffusionXLControlNeXtPipeline
|
10 |
+
from transformers import CLIPVisionModelWithProjection
|
11 |
+
from transformers import CLIPTokenizer
|
12 |
+
import onnxruntime as ort
|
13 |
+
from configs import *
|
14 |
+
|
15 |
+
def log_validation(
|
16 |
+
vae,
|
17 |
+
scheduler,
|
18 |
+
text_encoder,
|
19 |
+
tokenizer,
|
20 |
+
unet,
|
21 |
+
controlnet,
|
22 |
+
args,
|
23 |
+
device,
|
24 |
+
image_proj,
|
25 |
+
text_encoder2,
|
26 |
+
tokenizer2,
|
27 |
+
image_encoder
|
28 |
+
):
|
29 |
+
if len(args.validation_image) == len(args.validation_prompt):
|
30 |
+
validation_images = args.validation_image
|
31 |
+
validation_prompts = args.validation_prompt
|
32 |
+
elif len(args.validation_image) == 1:
|
33 |
+
validation_images = args.validation_image * len(args.validation_prompt)
|
34 |
+
validation_prompts = args.validation_prompt
|
35 |
+
elif len(args.validation_prompt) == 1:
|
36 |
+
validation_images = args.validation_image
|
37 |
+
validation_prompts = args.validation_prompt * len(args.validation_image)
|
38 |
+
else:
|
39 |
+
raise ValueError(
|
40 |
+
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
|
41 |
+
)
|
42 |
+
|
43 |
+
if args.negative_prompt is not None:
|
44 |
+
negative_prompts = args.negative_prompt
|
45 |
+
assert len(validation_prompts) == len(validation_prompts)
|
46 |
+
else:
|
47 |
+
negative_prompts = None
|
48 |
+
|
49 |
+
inference_ctx = torch.autocast(device)
|
50 |
+
|
51 |
+
pipeline = StableDiffusionXLControlNeXtPipeline(
|
52 |
+
vae=vae,
|
53 |
+
text_encoder=text_encoder,
|
54 |
+
text_encoder_2=text_encoder2,
|
55 |
+
tokenizer=tokenizer,
|
56 |
+
tokenizer_2=tokenizer2,
|
57 |
+
unet=unet,
|
58 |
+
controlnext=controlnet,
|
59 |
+
scheduler=scheduler,
|
60 |
+
image_encoder=image_encoder,
|
61 |
+
device=device,
|
62 |
+
image_proj=image_proj
|
63 |
+
)
|
64 |
+
|
65 |
+
image_logs = []
|
66 |
+
pil_image = args.pil_image
|
67 |
+
|
68 |
+
if args.pil_image is not None:
|
69 |
+
pil_image = Image.open(pil_image).convert("RGB")
|
70 |
+
|
71 |
+
for i, (validation_prompt, validation_image) in enumerate(zip(validation_prompts, validation_images)):
|
72 |
+
validation_image = Image.open(validation_image).convert("RGB")
|
73 |
+
|
74 |
+
images = []
|
75 |
+
negative_prompt = negative_prompts[i] if negative_prompts is not None else None
|
76 |
+
|
77 |
+
for _ in range(args.num_validation_images):
|
78 |
+
|
79 |
+
with inference_ctx:
|
80 |
+
|
81 |
+
image = pipeline(
|
82 |
+
prompt=validation_prompt,
|
83 |
+
controlnet_image=validation_image,
|
84 |
+
num_inference_steps=args.num_inference_steps,
|
85 |
+
guidance_rescale = args.guidance_scale,
|
86 |
+
negative_prompt=negative_prompt,
|
87 |
+
ip_adapter_image=pil_image,
|
88 |
+
control_scale=args.controlnext_scale,
|
89 |
+
width = args.width,
|
90 |
+
height=args.height,
|
91 |
+
)[0]
|
92 |
+
|
93 |
+
images.append(image)
|
94 |
+
|
95 |
+
image_logs.append(
|
96 |
+
{"validation_image": validation_image.resize((args.width,args.height)),
|
97 |
+
"ip_adapter_image": pil_image.resize((args.width,args.height)),
|
98 |
+
"images": images, "validation_prompt": validation_prompt}
|
99 |
+
)
|
100 |
+
|
101 |
+
save_dir_path = args.output_dir
|
102 |
+
|
103 |
+
if not os.path.exists(save_dir_path):
|
104 |
+
os.makedirs(save_dir_path)
|
105 |
+
for i, log in enumerate(image_logs):
|
106 |
+
images = log["images"]
|
107 |
+
validation_prompt = log["validation_prompt"]
|
108 |
+
ip_adapter_image = log["ip_adapter_image"]
|
109 |
+
validation_image = log["validation_image"]
|
110 |
+
|
111 |
+
formatted_images = []
|
112 |
+
formatted_images.append(np.asarray(validation_image))
|
113 |
+
formatted_images.append(np.asarray(ip_adapter_image))
|
114 |
+
|
115 |
+
for image in images:
|
116 |
+
formatted_images.append(np.asarray(image))
|
117 |
+
|
118 |
+
for idx, img in enumerate(formatted_images):
|
119 |
+
print(f"Image {idx} shape: {img.shape}")
|
120 |
+
|
121 |
+
formatted_images = np.concatenate(formatted_images, 1)
|
122 |
+
|
123 |
+
file_path = os.path.join(save_dir_path, "image_{}.png".format(i))
|
124 |
+
formatted_images = cv2.cvtColor(formatted_images, cv2.COLOR_BGR2RGB)
|
125 |
+
print("Save images to:", file_path)
|
126 |
+
cv2.imwrite(file_path, formatted_images)
|
127 |
+
|
128 |
+
return image_logs
|
129 |
+
|
130 |
+
def parse_args(input_args=None):
|
131 |
+
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
|
132 |
+
|
133 |
+
parser.add_argument(
|
134 |
+
"--output_dir",
|
135 |
+
type=str,
|
136 |
+
default=None,
|
137 |
+
help="The output directory where the inference result will be written.",
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--pil_image",
|
141 |
+
type=str,
|
142 |
+
default=None,
|
143 |
+
help="IP Adapter image path.",
|
144 |
+
)
|
145 |
+
|
146 |
+
parser.add_argument(
|
147 |
+
"--validation_prompt",
|
148 |
+
type=str,
|
149 |
+
default=None,
|
150 |
+
nargs="+",
|
151 |
+
help=(
|
152 |
+
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
153 |
+
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
154 |
+
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
155 |
+
),
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--negative_prompt",
|
159 |
+
type=str,
|
160 |
+
default=None,
|
161 |
+
nargs="+",
|
162 |
+
help=(
|
163 |
+
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
164 |
+
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
165 |
+
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
166 |
+
),
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--validation_image",
|
170 |
+
type=str,
|
171 |
+
default=None,
|
172 |
+
nargs="+",
|
173 |
+
help=(
|
174 |
+
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
|
175 |
+
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
|
176 |
+
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
|
177 |
+
" `--validation_image` that will be used with all `--validation_prompt`s."
|
178 |
+
),
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--num_validation_images",
|
182 |
+
type=int,
|
183 |
+
default=1,
|
184 |
+
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair.",
|
185 |
+
)
|
186 |
+
|
187 |
+
parser.add_argument(
|
188 |
+
"--num_inference_steps",
|
189 |
+
type=int,
|
190 |
+
default=30,
|
191 |
+
help="Number of steps for inference.",
|
192 |
+
)
|
193 |
+
|
194 |
+
parser.add_argument(
|
195 |
+
"--controlnext_scale",
|
196 |
+
type=float,
|
197 |
+
default=2.5,
|
198 |
+
help="ControlNext scale.",
|
199 |
+
)
|
200 |
+
|
201 |
+
parser.add_argument(
|
202 |
+
"--guidance_scale",
|
203 |
+
type=float,
|
204 |
+
default=7.5,
|
205 |
+
help="Guidance scale.",
|
206 |
+
)
|
207 |
+
|
208 |
+
parser.add_argument(
|
209 |
+
"--height",
|
210 |
+
type=int,
|
211 |
+
default=1024,
|
212 |
+
help="The height of output image.",
|
213 |
+
)
|
214 |
+
|
215 |
+
parser.add_argument(
|
216 |
+
"--width",
|
217 |
+
type=int,
|
218 |
+
default=1024,
|
219 |
+
help="The width of output image.",
|
220 |
+
)
|
221 |
+
|
222 |
+
if input_args is not None:
|
223 |
+
args = parser.parse_args(input_args)
|
224 |
+
else:
|
225 |
+
args = parser.parse_args()
|
226 |
+
|
227 |
+
|
228 |
+
if args.validation_prompt is not None and args.validation_image is None:
|
229 |
+
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
|
230 |
+
|
231 |
+
if args.validation_prompt is None and args.validation_image is not None:
|
232 |
+
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
|
233 |
+
|
234 |
+
if (
|
235 |
+
args.validation_image is not None
|
236 |
+
and args.validation_prompt is not None
|
237 |
+
and len(args.validation_image) != 1
|
238 |
+
and len(args.validation_prompt) != 1
|
239 |
+
and len(args.validation_image) != len(args.validation_prompt)
|
240 |
+
):
|
241 |
+
raise ValueError(
|
242 |
+
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
|
243 |
+
" or the same number of `--validation_prompt`s and `--validation_image`s"
|
244 |
+
)
|
245 |
+
|
246 |
+
return args
|
247 |
+
|
248 |
+
if __name__ == "__main__":
|
249 |
+
args = parse_args()
|
250 |
+
|
251 |
+
device = 'cuda:0'
|
252 |
+
|
253 |
+
vae_session = ort.InferenceSession(VAE_ONNX_PATH, providers=providers, sess_options=session_options)
|
254 |
+
|
255 |
+
unet_session = ort.InferenceSession(UNET_ONNX_PATH, providers=providers, sess_options=session_options, provider_options=provider_options_1)
|
256 |
+
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
|
257 |
+
tokenizer2 = CLIPTokenizer.from_pretrained(TOKENIZER_PATH2)
|
258 |
+
text_encoder_session = ort.InferenceSession(TEXT_ENCODER_PATH, providers=providers, sess_options=session_options)
|
259 |
+
text_encoder_session2 = ort.InferenceSession(TEXT_ENCODER_PATH2, providers=providers, sess_options=session_options)
|
260 |
+
scheduler = DDPMScheduler.from_pretrained(SCHEDULER_PATH)
|
261 |
+
|
262 |
+
controlnet = ort.InferenceSession(CONTROLNEXT_ONNX_PATH, providers=providers, sess_options=session_options)
|
263 |
+
#image_encoder = ort.InferenceSession(IMAGE_ENCODER_ONNX_PATH, providers=providers, provider_options=provider_options_0)
|
264 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained('h94/IP-Adapter', subfolder = 'sdxl_models/image_encoder').to(device, dtype=torch.float32)
|
265 |
+
image_proj = ort.InferenceSession(PROJ_ONNX_PATH, providers=providers, sess_options=session_options)
|
266 |
+
|
267 |
+
log_validation(
|
268 |
+
vae=vae_session,
|
269 |
+
scheduler=scheduler,
|
270 |
+
text_encoder=text_encoder_session,
|
271 |
+
tokenizer=tokenizer,
|
272 |
+
unet=unet_session,
|
273 |
+
controlnet=controlnet,
|
274 |
+
image_encoder = image_encoder,
|
275 |
+
args=args,
|
276 |
+
device=device,
|
277 |
+
image_proj = image_proj,
|
278 |
+
text_encoder2 = text_encoder_session2,
|
279 |
+
tokenizer2 = tokenizer2
|
280 |
+
)
|