Modified pipeline ONNX
Browse files
code_inference/pipeline_sdxl_cnext_ipadapter.py
CHANGED
@@ -310,7 +310,7 @@ class StableDiffusionXLControlNeXtPipeline():
|
|
310 |
controlnext: ort.InferenceSession,
|
311 |
image_proj: ort.InferenceSession,
|
312 |
scheduler: DDPMScheduler,
|
313 |
-
image_encoder:
|
314 |
feature_extractor: CLIPImageProcessor = None,
|
315 |
add_watermarker: Optional[bool] = None,
|
316 |
device=None,
|
@@ -1122,8 +1122,8 @@ class StableDiffusionXLControlNeXtPipeline():
|
|
1122 |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
1123 |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
1124 |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
1125 |
-
prompt_embeds = torch.cat([
|
1126 |
-
negative_prompt_embeds = torch.cat([
|
1127 |
|
1128 |
if self.do_classifier_free_guidance:
|
1129 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
@@ -1182,7 +1182,7 @@ class StableDiffusionXLControlNeXtPipeline():
|
|
1182 |
controls = self.controlnet.run(None, {'controlnext_image': controlnet_image.cpu().numpy(),
|
1183 |
'timestep': t.unsqueeze(0).cpu().numpy().astype(np.float32),})
|
1184 |
|
1185 |
-
scale = torch.tensor([
|
1186 |
|
1187 |
noise_pred = self.unet.run(None, {'sample': latent_model_input.cpu().numpy().astype(np.float32),
|
1188 |
'timestep': t.unsqueeze(0).cpu().numpy().astype(np.float32),
|
|
|
310 |
controlnext: ort.InferenceSession,
|
311 |
image_proj: ort.InferenceSession,
|
312 |
scheduler: DDPMScheduler,
|
313 |
+
image_encoder: ort.InferenceSession,
|
314 |
feature_extractor: CLIPImageProcessor = None,
|
315 |
add_watermarker: Optional[bool] = None,
|
316 |
device=None,
|
|
|
1122 |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
1123 |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
1124 |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
1125 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
1126 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
1127 |
|
1128 |
if self.do_classifier_free_guidance:
|
1129 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
|
1182 |
controls = self.controlnet.run(None, {'controlnext_image': controlnet_image.cpu().numpy(),
|
1183 |
'timestep': t.unsqueeze(0).cpu().numpy().astype(np.float32),})
|
1184 |
|
1185 |
+
scale = torch.tensor([control_scale])
|
1186 |
|
1187 |
noise_pred = self.unet.run(None, {'sample': latent_model_input.cpu().numpy().astype(np.float32),
|
1188 |
'timestep': t.unsqueeze(0).cpu().numpy().astype(np.float32),
|