Triton upload
Browse files- Triton/bls_sdxl_cnext_ip_anime/1/__pycache__/model.cpython-310.pyc +0 -0
- Triton/bls_sdxl_cnext_ip_anime/1/configs/scheduler/scheduler_config.json +23 -0
- Triton/bls_sdxl_cnext_ip_anime/1/configs/text_encoder_2_config/config.json +26 -0
- Triton/bls_sdxl_cnext_ip_anime/1/configs/unet_config/config.json +73 -0
- Triton/bls_sdxl_cnext_ip_anime/1/configs/vae_decode_config/config.json +38 -0
- Triton/bls_sdxl_cnext_ip_anime/1/model.py +1410 -0
- Triton/bls_sdxl_cnext_ip_anime/config.pbtxt +85 -0
- Triton/cnext_canny_anime/config.pbtxt +28 -0
- Triton/image_encoder/config.pbtxt +31 -0
- Triton/proj/config.pbtxt +31 -0
- Triton/text_encoder/config.pbtxt +105 -0
- Triton/text_encoder_2/config.pbtxt +205 -0
- Triton/tokenizer/1/__pycache__/model.cpython-310.pyc +0 -0
- Triton/tokenizer/1/config/merges.txt +0 -0
- Triton/tokenizer/1/config/special_tokens_map.json +30 -0
- Triton/tokenizer/1/config/tokenizer_config.json +30 -0
- Triton/tokenizer/1/config/vocab.json +0 -0
- Triton/tokenizer/1/model.py +69 -0
- Triton/tokenizer/config.pbtxt +30 -0
- Triton/tokenizer_2/1/__pycache__/model.cpython-310.pyc +0 -0
- Triton/tokenizer_2/1/config/merges.txt +0 -0
- Triton/tokenizer_2/1/config/special_tokens_map.json +30 -0
- Triton/tokenizer_2/1/config/tokenizer_config.json +38 -0
- Triton/tokenizer_2/1/config/vocab.json +0 -0
- Triton/tokenizer_2/1/model.py +69 -0
- Triton/tokenizer_2/config.pbtxt +30 -0
- Triton/unet/config.pbtxt +49 -0
- Triton/vae_decoder/config.pbtxt +29 -0
Triton/bls_sdxl_cnext_ip_anime/1/__pycache__/model.cpython-310.pyc
ADDED
Binary file (31.8 kB). View file
|
|
Triton/bls_sdxl_cnext_ip_anime/1/configs/scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "EulerDiscreteScheduler",
|
3 |
+
"_diffusers_version": "0.30.3",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"final_sigmas_type": "zero",
|
9 |
+
"interpolation_type": "linear",
|
10 |
+
"num_train_timesteps": 1000,
|
11 |
+
"prediction_type": "epsilon",
|
12 |
+
"rescale_betas_zero_snr": false,
|
13 |
+
"sample_max_value": 1.0,
|
14 |
+
"set_alpha_to_one": false,
|
15 |
+
"sigma_max": null,
|
16 |
+
"sigma_min": null,
|
17 |
+
"skip_prk_steps": true,
|
18 |
+
"steps_offset": 1,
|
19 |
+
"timestep_spacing": "leading",
|
20 |
+
"timestep_type": "discrete",
|
21 |
+
"trained_betas": null,
|
22 |
+
"use_karras_sigmas": false
|
23 |
+
}
|
Triton/bls_sdxl_cnext_ip_anime/1/configs/text_encoder_2_config/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/huggingface/hub/models--neta-art--neta-xl-2.0/snapshots/3b5b71e53e392a96238e72f95d88ec17990e8ca6/text_encoder_2",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1280,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 5120,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 20,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"output_hidden_states": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"projection_dim": 1280,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.45.2",
|
25 |
+
"vocab_size": 49408
|
26 |
+
}
|
Triton/bls_sdxl_cnext_ip_anime/1/configs/unet_config/config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.30.3",
|
4 |
+
"_name_or_path": "/root/.cache/huggingface/hub/models--neta-art--neta-xl-2.0/snapshots/3b5b71e53e392a96238e72f95d88ec17990e8ca6/unet",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": "text_time",
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": 256,
|
9 |
+
"attention_head_dim": [
|
10 |
+
5,
|
11 |
+
10,
|
12 |
+
20
|
13 |
+
],
|
14 |
+
"attention_type": "default",
|
15 |
+
"block_out_channels": [
|
16 |
+
320,
|
17 |
+
640,
|
18 |
+
1280
|
19 |
+
],
|
20 |
+
"center_input_sample": false,
|
21 |
+
"class_embed_type": null,
|
22 |
+
"class_embeddings_concat": false,
|
23 |
+
"conv_in_kernel": 3,
|
24 |
+
"conv_out_kernel": 3,
|
25 |
+
"cross_attention_dim": 2048,
|
26 |
+
"cross_attention_norm": null,
|
27 |
+
"down_block_types": [
|
28 |
+
"DownBlock2D",
|
29 |
+
"CrossAttnDownBlock2D",
|
30 |
+
"CrossAttnDownBlock2D"
|
31 |
+
],
|
32 |
+
"downsample_padding": 1,
|
33 |
+
"dropout": 0.0,
|
34 |
+
"dual_cross_attention": false,
|
35 |
+
"encoder_hid_dim": null,
|
36 |
+
"encoder_hid_dim_type": null,
|
37 |
+
"flip_sin_to_cos": true,
|
38 |
+
"freq_shift": 0,
|
39 |
+
"in_channels": 4,
|
40 |
+
"layers_per_block": 2,
|
41 |
+
"mid_block_only_cross_attention": null,
|
42 |
+
"mid_block_scale_factor": 1,
|
43 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
44 |
+
"norm_eps": 1e-05,
|
45 |
+
"norm_num_groups": 32,
|
46 |
+
"num_attention_heads": null,
|
47 |
+
"num_class_embeds": null,
|
48 |
+
"only_cross_attention": false,
|
49 |
+
"out_channels": 4,
|
50 |
+
"projection_class_embeddings_input_dim": 2816,
|
51 |
+
"resnet_out_scale_factor": 1.0,
|
52 |
+
"resnet_skip_time_act": false,
|
53 |
+
"resnet_time_scale_shift": "default",
|
54 |
+
"reverse_transformer_layers_per_block": null,
|
55 |
+
"sample_size": 128,
|
56 |
+
"time_cond_proj_dim": null,
|
57 |
+
"time_embedding_act_fn": null,
|
58 |
+
"time_embedding_dim": null,
|
59 |
+
"time_embedding_type": "positional",
|
60 |
+
"timestep_post_act": null,
|
61 |
+
"transformer_layers_per_block": [
|
62 |
+
1,
|
63 |
+
2,
|
64 |
+
10
|
65 |
+
],
|
66 |
+
"up_block_types": [
|
67 |
+
"CrossAttnUpBlock2D",
|
68 |
+
"CrossAttnUpBlock2D",
|
69 |
+
"UpBlock2D"
|
70 |
+
],
|
71 |
+
"upcast_attention": null,
|
72 |
+
"use_linear_projection": true
|
73 |
+
}
|
Triton/bls_sdxl_cnext_ip_anime/1/configs/vae_decode_config/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.30.3",
|
4 |
+
"_name_or_path": "/root/.cache/huggingface/hub/models--neta-art--neta-xl-2.0/snapshots/3b5b71e53e392a96238e72f95d88ec17990e8ca6/vae",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"force_upcast": true,
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 4,
|
21 |
+
"latents_mean": null,
|
22 |
+
"latents_std": null,
|
23 |
+
"layers_per_block": 2,
|
24 |
+
"mid_block_add_attention": true,
|
25 |
+
"norm_num_groups": 32,
|
26 |
+
"out_channels": 3,
|
27 |
+
"sample_size": 1024,
|
28 |
+
"scaling_factor": 0.13025,
|
29 |
+
"shift_factor": null,
|
30 |
+
"up_block_types": [
|
31 |
+
"UpDecoderBlock2D",
|
32 |
+
"UpDecoderBlock2D",
|
33 |
+
"UpDecoderBlock2D",
|
34 |
+
"UpDecoderBlock2D"
|
35 |
+
],
|
36 |
+
"use_post_quant_conv": true,
|
37 |
+
"use_quant_conv": true
|
38 |
+
}
|
Triton/bls_sdxl_cnext_ip_anime/1/model.py
ADDED
@@ -0,0 +1,1410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import logging
|
3 |
+
import json
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
from pathlib import Path
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers import (
|
12 |
+
CLIPImageProcessor,
|
13 |
+
CLIPTextModel,
|
14 |
+
CLIPTextModelWithProjection,
|
15 |
+
CLIPTokenizer,
|
16 |
+
CLIPVisionModelWithProjection,
|
17 |
+
CLIPFeatureExtractor,
|
18 |
+
)
|
19 |
+
|
20 |
+
from diffusers import DDPMScheduler
|
21 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
22 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
23 |
+
from diffusers.loaders import (
|
24 |
+
FromSingleFileMixin,
|
25 |
+
IPAdapterMixin,
|
26 |
+
StableDiffusionXLLoraLoaderMixin,
|
27 |
+
TextualInversionLoaderMixin,
|
28 |
+
)
|
29 |
+
from diffusers.models import (
|
30 |
+
AutoencoderKL,
|
31 |
+
ImageProjection,
|
32 |
+
UNet2DConditionModel,
|
33 |
+
)
|
34 |
+
from diffusers.models.attention_processor import (
|
35 |
+
AttnProcessor2_0,
|
36 |
+
FusedAttnProcessor2_0,
|
37 |
+
LoRAAttnProcessor2_0,
|
38 |
+
LoRAXFormersAttnProcessor,
|
39 |
+
XFormersAttnProcessor,
|
40 |
+
)
|
41 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
42 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
43 |
+
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE
|
44 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
45 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
46 |
+
from diffusers.schedulers import (
|
47 |
+
DDIMScheduler,
|
48 |
+
DPMSolverMultistepScheduler,
|
49 |
+
DEISMultistepScheduler,
|
50 |
+
EulerAncestralDiscreteScheduler,
|
51 |
+
EulerDiscreteScheduler,
|
52 |
+
LMSDiscreteScheduler,
|
53 |
+
PNDMScheduler,
|
54 |
+
KarrasDiffusionSchedulers,
|
55 |
+
)
|
56 |
+
from diffusers.utils import (
|
57 |
+
USE_PEFT_BACKEND,
|
58 |
+
deprecate,
|
59 |
+
is_invisible_watermark_available,
|
60 |
+
is_torch_xla_available,
|
61 |
+
logging as diffusers_logging,
|
62 |
+
replace_example_docstring,
|
63 |
+
scale_lora_layers,
|
64 |
+
unscale_lora_layers,
|
65 |
+
PIL_INTERPOLATION,
|
66 |
+
|
67 |
+
)
|
68 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
69 |
+
|
70 |
+
# Triton Python backend utils
|
71 |
+
try:
|
72 |
+
import triton_python_backend_utils as pb_utils
|
73 |
+
except ImportError:
|
74 |
+
pass # triton_python_backend_utils exists only inside Triton Python backend.
|
75 |
+
|
76 |
+
# Conditionally import watermark if available
|
77 |
+
if is_invisible_watermark_available():
|
78 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
79 |
+
|
80 |
+
from configs import *
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
class TritonPythonModel:
|
85 |
+
tokenizer: CLIPTokenizer
|
86 |
+
tokenizer_2: CLIPTokenizer
|
87 |
+
image_encoder: CLIPVisionModelWithProjection
|
88 |
+
feature_extractor: CLIPImageProcessor
|
89 |
+
scheduler: Union[
|
90 |
+
DDIMScheduler,
|
91 |
+
PNDMScheduler,
|
92 |
+
LMSDiscreteScheduler,
|
93 |
+
EulerDiscreteScheduler,
|
94 |
+
EulerAncestralDiscreteScheduler,
|
95 |
+
DPMSolverMultistepScheduler,
|
96 |
+
]
|
97 |
+
prompt: Union[str, List[str]]
|
98 |
+
prompt_2: Optional[Union[str, List[str]]]
|
99 |
+
controlnet_image: Optional[PipelineImageInput]
|
100 |
+
cnext_model_name: str
|
101 |
+
height: Optional[int]
|
102 |
+
width: Optional[int]
|
103 |
+
num_inference_steps: int
|
104 |
+
timesteps: List[int]
|
105 |
+
sigmas: List[float]
|
106 |
+
denoising_end: Optional[float]
|
107 |
+
guidance_scale: float
|
108 |
+
negative_prompt: Optional[Union[str, List[str]]]
|
109 |
+
negative_prompt_2: Optional[Union[str, List[str]]]
|
110 |
+
num_images_per_prompt: Optional[int]
|
111 |
+
eta: float
|
112 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]]
|
113 |
+
latents: Optional[torch.Tensor]
|
114 |
+
prompt_embeds: Optional[torch.Tensor]
|
115 |
+
negative_prompt_embeds: Optional[torch.Tensor]
|
116 |
+
pooled_prompt_embeds: Optional[torch.Tensor]
|
117 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor]
|
118 |
+
ip_adapter_image: Optional[PipelineImageInput]
|
119 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]]
|
120 |
+
output_type: Optional[str]
|
121 |
+
return_dict: bool
|
122 |
+
cross_attention_kwargs: Optional[Dict[str, Any]]
|
123 |
+
guidance_rescale: float
|
124 |
+
original_size: Optional[Tuple[int, int]]
|
125 |
+
crops_coords_top_left: Tuple[int, int]
|
126 |
+
target_size: Optional[Tuple[int, int]]
|
127 |
+
negative_original_size: Optional[Tuple[int, int]]
|
128 |
+
negative_crops_coords_top_left: Tuple[int, int]
|
129 |
+
negative_target_size: Optional[Tuple[int, int]]
|
130 |
+
clip_skip: Optional[int]
|
131 |
+
callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]
|
132 |
+
control_scale: float
|
133 |
+
callback_on_step_end_tensor_inputs: List[str]
|
134 |
+
add_watermarker: Optional[bool]
|
135 |
+
device: str
|
136 |
+
|
137 |
+
_callback_tensor_inputs = [
|
138 |
+
"latents",
|
139 |
+
"prompt_embeds",
|
140 |
+
"negative_prompt_embeds",
|
141 |
+
"add_text_embeds",
|
142 |
+
"add_time_ids",
|
143 |
+
"negative_pooled_prompt_embeds",
|
144 |
+
"negative_add_time_ids",
|
145 |
+
]
|
146 |
+
|
147 |
+
@property
|
148 |
+
def guidance_scale(self) -> Optional[float]:
|
149 |
+
return self._guidance_scale
|
150 |
+
|
151 |
+
@guidance_scale.setter
|
152 |
+
def guidance_scale(self, value: Optional[float]) -> None:
|
153 |
+
self._guidance_scale = value
|
154 |
+
|
155 |
+
# Getter and setter for guidance_rescale
|
156 |
+
@property
|
157 |
+
def guidance_rescale(self) -> Optional[float]:
|
158 |
+
return self._guidance_rescale
|
159 |
+
|
160 |
+
@guidance_rescale.setter
|
161 |
+
def guidance_rescale(self, value: Optional[float]) -> None:
|
162 |
+
self._guidance_rescale = value
|
163 |
+
|
164 |
+
# Getter and setter for clip_skip
|
165 |
+
@property
|
166 |
+
def clip_skip(self) -> Optional[int]:
|
167 |
+
return self._clip_skip
|
168 |
+
|
169 |
+
@clip_skip.setter
|
170 |
+
def clip_skip(self, value: Optional[int]) -> None:
|
171 |
+
self._clip_skip = value
|
172 |
+
|
173 |
+
# Getter for do_classifier_free_guidance (no setter since it's computed)
|
174 |
+
@property
|
175 |
+
def do_classifier_free_guidance(self) -> bool:
|
176 |
+
return self._guidance_scale > 1 and self.unet_configs['time_cond_proj_dim'] is None
|
177 |
+
|
178 |
+
# Getter and setter for cross_attention_kwargs
|
179 |
+
@property
|
180 |
+
def cross_attention_kwargs(self) -> Optional[dict]:
|
181 |
+
return self._cross_attention_kwargs
|
182 |
+
|
183 |
+
@cross_attention_kwargs.setter
|
184 |
+
def cross_attention_kwargs(self, value: Optional[dict]) -> None:
|
185 |
+
self._cross_attention_kwargs = value
|
186 |
+
|
187 |
+
# Getter and setter for denoising_end
|
188 |
+
@property
|
189 |
+
def denoising_end(self) -> Optional[float]:
|
190 |
+
return self._denoising_end
|
191 |
+
|
192 |
+
@denoising_end.setter
|
193 |
+
def denoising_end(self, value: Optional[float]) -> None:
|
194 |
+
self._denoising_end = value
|
195 |
+
|
196 |
+
# Getter and setter for num_timesteps
|
197 |
+
@property
|
198 |
+
def num_timesteps(self) -> Optional[int]:
|
199 |
+
return self._num_timesteps
|
200 |
+
|
201 |
+
@num_timesteps.setter
|
202 |
+
def num_timesteps(self, value: Optional[int]) -> None:
|
203 |
+
self._num_timesteps = value
|
204 |
+
|
205 |
+
# Getter and setter for interrupt
|
206 |
+
@property
|
207 |
+
def interrupt(self) -> Optional[bool]:
|
208 |
+
return self._interrupt
|
209 |
+
|
210 |
+
@interrupt.setter
|
211 |
+
def interrupt(self, value: Optional[bool]) -> None:
|
212 |
+
self._interrupt = value
|
213 |
+
|
214 |
+
|
215 |
+
def initialize(self, args: Dict[str, str]) -> None:
|
216 |
+
|
217 |
+
# current_name: str = str(Path(args["model_repository"]).parent.absolute())
|
218 |
+
# self.scheduler_config_path = current_name + "/bls_sdxl_cnext_ip/1/scheduler/"
|
219 |
+
# self.scheduler = DEISMultistepScheduler.from_config(self.scheduler_config_path)
|
220 |
+
|
221 |
+
self.logger = pb_utils.Logger
|
222 |
+
|
223 |
+
self.prompt = None
|
224 |
+
self.prompt_2 = None
|
225 |
+
self.negative_prompt = None
|
226 |
+
self.negative_prompt_2 = None
|
227 |
+
|
228 |
+
self.controlnet_image = None
|
229 |
+
self.cnext_model_name = None
|
230 |
+
|
231 |
+
self.height = None
|
232 |
+
self.width = None
|
233 |
+
self.num_inference_steps = 50
|
234 |
+
self.timesteps = None
|
235 |
+
self.sigmas = None
|
236 |
+
self.denoising_end = None
|
237 |
+
self.guidance_scale = 5.0
|
238 |
+
|
239 |
+
self.num_images_per_prompt = 1
|
240 |
+
self.eta = 0.0
|
241 |
+
self.generator = None
|
242 |
+
self.latents = None
|
243 |
+
self.prompt_embeds = None
|
244 |
+
self.negative_prompt_embeds = None
|
245 |
+
self.pooled_prompt_embeds = None
|
246 |
+
self.negative_pooled_prompt_embeds = None
|
247 |
+
self.ip_adapter_image = None
|
248 |
+
self.ip_adapter_image_embeds = None
|
249 |
+
self.output_type = "pil"
|
250 |
+
self.return_dict = True
|
251 |
+
self.cross_attention_kwargs = None
|
252 |
+
self.guidance_rescale = 0.0
|
253 |
+
self.original_size = None
|
254 |
+
self.crops_coords_top_left = (0, 0)
|
255 |
+
self.target_size = None
|
256 |
+
self.negative_original_size = None
|
257 |
+
self.negative_crops_coords_top_left = (0, 0)
|
258 |
+
self.negative_target_size = None
|
259 |
+
self.clip_skip = None
|
260 |
+
self.callback_on_step_end = None
|
261 |
+
self.control_scale = 1.5
|
262 |
+
self.dtype = torch.float32
|
263 |
+
self.callback_on_step_end_tensor_inputs = ["latents"]
|
264 |
+
self.add_watermarker = None
|
265 |
+
|
266 |
+
current_name: str = str(Path(args["model_repository"]).parent.absolute())
|
267 |
+
|
268 |
+
self.vae_configs = self.read_json(current_name + "/bls_sdxl_cnext_ip_anime/1/configs/vae_decode_config/config.json")
|
269 |
+
self.unet_configs = self.read_json(current_name + "/bls_sdxl_cnext_ip_anime/1/configs/unet_config/config.json")
|
270 |
+
self.text_encoder_2_configs = self.read_json(current_name + "/bls_sdxl_cnext_ip_anime/1/configs/text_encoder_2_config/config.json")
|
271 |
+
# self.scheduler = DDPMScheduler
|
272 |
+
self.scheduler_config_path = current_name + "/bls_sdxl_cnext_ip_anime/1/configs/scheduler/"
|
273 |
+
self.scheduler = DDPMScheduler.from_config(self.scheduler_config_path)
|
274 |
+
|
275 |
+
|
276 |
+
self.vae_scale_factor = 2 ** (len(self.vae_configs['block_out_channels']) - 1)
|
277 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
278 |
+
self.control_image_processor = VaeImageProcessor(
|
279 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
280 |
+
)
|
281 |
+
|
282 |
+
self.default_sample_size = self.unet_configs["sample_size"]
|
283 |
+
|
284 |
+
add_watermarker = self.add_watermarker if self.add_watermarker is not None else is_invisible_watermark_available()
|
285 |
+
|
286 |
+
if add_watermarker:
|
287 |
+
self.watermark = StableDiffusionXLWatermarker()
|
288 |
+
else:
|
289 |
+
self.watermark = None
|
290 |
+
|
291 |
+
if args.get("model_instance_kind") == "GPU":
|
292 |
+
self.device = "cuda"
|
293 |
+
else:
|
294 |
+
self.device = "cpu"
|
295 |
+
|
296 |
+
self.image_dtype = torch.float32
|
297 |
+
|
298 |
+
def prepare_image(
|
299 |
+
self,
|
300 |
+
image,
|
301 |
+
width,
|
302 |
+
height,
|
303 |
+
batch_size,
|
304 |
+
num_images_per_prompt,
|
305 |
+
device,
|
306 |
+
dtype,
|
307 |
+
do_classifier_free_guidance=False,
|
308 |
+
guess_mode=False,
|
309 |
+
):
|
310 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
311 |
+
image_batch_size = image.shape[0]
|
312 |
+
|
313 |
+
if image_batch_size == 1:
|
314 |
+
repeat_by = batch_size
|
315 |
+
else:
|
316 |
+
repeat_by = num_images_per_prompt
|
317 |
+
|
318 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
319 |
+
|
320 |
+
image = image.to(device=device, dtype=dtype)
|
321 |
+
|
322 |
+
if do_classifier_free_guidance and not guess_mode:
|
323 |
+
image = torch.cat([image] * 2)
|
324 |
+
|
325 |
+
return image
|
326 |
+
|
327 |
+
|
328 |
+
def check_inputs(
|
329 |
+
self,
|
330 |
+
prompt,
|
331 |
+
prompt_2,
|
332 |
+
height,
|
333 |
+
width,
|
334 |
+
callback_steps,
|
335 |
+
negative_prompt=None,
|
336 |
+
negative_prompt_2=None,
|
337 |
+
prompt_embeds=None,
|
338 |
+
negative_prompt_embeds=None,
|
339 |
+
pooled_prompt_embeds=None,
|
340 |
+
negative_pooled_prompt_embeds=None,
|
341 |
+
ip_adapter_image=None,
|
342 |
+
ip_adapter_image_embeds=None,
|
343 |
+
):
|
344 |
+
if height % 8 != 0 or width % 8 != 0:
|
345 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
346 |
+
|
347 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
348 |
+
raise ValueError(
|
349 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
350 |
+
f" {type(callback_steps)}."
|
351 |
+
)
|
352 |
+
|
353 |
+
if prompt is not None and prompt_embeds is not None:
|
354 |
+
raise ValueError(
|
355 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
356 |
+
" only forward one of the two."
|
357 |
+
)
|
358 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
359 |
+
raise ValueError(
|
360 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
361 |
+
" only forward one of the two."
|
362 |
+
)
|
363 |
+
elif prompt is None and prompt_embeds is None:
|
364 |
+
raise ValueError(
|
365 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
366 |
+
)
|
367 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
368 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
369 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
370 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
371 |
+
|
372 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
373 |
+
raise ValueError(
|
374 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
375 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
376 |
+
)
|
377 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
378 |
+
raise ValueError(
|
379 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
380 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
381 |
+
)
|
382 |
+
|
383 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
384 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
385 |
+
raise ValueError(
|
386 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
387 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
388 |
+
f" {negative_prompt_embeds.shape}."
|
389 |
+
)
|
390 |
+
|
391 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
392 |
+
raise ValueError(
|
393 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
394 |
+
)
|
395 |
+
|
396 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
397 |
+
raise ValueError(
|
398 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
399 |
+
)
|
400 |
+
|
401 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
402 |
+
raise ValueError(
|
403 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
404 |
+
)
|
405 |
+
|
406 |
+
if ip_adapter_image_embeds is not None:
|
407 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
408 |
+
raise ValueError(
|
409 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
410 |
+
)
|
411 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
412 |
+
raise ValueError(
|
413 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
414 |
+
)
|
415 |
+
|
416 |
+
|
417 |
+
#Call CLIPTokenizer model.py
|
418 |
+
def tokenizer_infer(self, prompt):
|
419 |
+
prompt = np.array(prompt, dtype = np.object_)
|
420 |
+
text_input = pb_utils.Tensor("TEXT", prompt)
|
421 |
+
inference_request = pb_utils.InferenceRequest(
|
422 |
+
model_name="tokenizer",
|
423 |
+
requested_output_names=["input_ids"],
|
424 |
+
inputs=[text_input],
|
425 |
+
)
|
426 |
+
inference_response = inference_request.exec()
|
427 |
+
if inference_response.has_error():
|
428 |
+
raise pb_utils.TritonModelException(
|
429 |
+
inference_response.error().message()
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
text_input_ids = pb_utils.get_output_tensor_by_name(
|
433 |
+
inference_response, "input_ids"
|
434 |
+
)
|
435 |
+
text_input_ids: torch.Tensor = torch.from_dlpack(text_input_ids.to_dlpack())
|
436 |
+
return text_input_ids
|
437 |
+
|
438 |
+
#Call CLIPTokenizer 2 model.py
|
439 |
+
def tokenizer_2_infer(self, prompt):
|
440 |
+
prompt = np.array(prompt, dtype = np.object_)
|
441 |
+
text_input = pb_utils.Tensor("TEXT", prompt)
|
442 |
+
inference_request = pb_utils.InferenceRequest(
|
443 |
+
model_name="tokenizer_2",
|
444 |
+
requested_output_names=["input_ids"],
|
445 |
+
inputs=[text_input],
|
446 |
+
)
|
447 |
+
inference_response = inference_request.exec()
|
448 |
+
if inference_response.has_error():
|
449 |
+
raise pb_utils.TritonModelException(
|
450 |
+
inference_response.error().message()
|
451 |
+
)
|
452 |
+
else:
|
453 |
+
text_input_ids = pb_utils.get_output_tensor_by_name(
|
454 |
+
inference_response, "input_ids"
|
455 |
+
)
|
456 |
+
text_input_ids: torch.Tensor = torch.from_dlpack(text_input_ids.to_dlpack())
|
457 |
+
return text_input_ids
|
458 |
+
|
459 |
+
#Call text encode model
|
460 |
+
def text_encoder_infer(self, text_input_ids):
|
461 |
+
text_input_encoder = pb_utils.Tensor("input_ids", np.array(text_input_ids))
|
462 |
+
|
463 |
+
inference_request = pb_utils.InferenceRequest(
|
464 |
+
model_name="text_encoder",
|
465 |
+
requested_output_names=["last_hidden_state"],
|
466 |
+
inputs=[text_input_encoder],
|
467 |
+
)
|
468 |
+
inference_response = inference_request.exec()
|
469 |
+
if inference_response.has_error():
|
470 |
+
raise pb_utils.TritonModelException(
|
471 |
+
inference_response.error().message()
|
472 |
+
)
|
473 |
+
|
474 |
+
output = pb_utils.get_output_tensor_by_name(
|
475 |
+
inference_response, "last_hidden_state"
|
476 |
+
)
|
477 |
+
return output
|
478 |
+
|
479 |
+
|
480 |
+
#Call text encode 2 model
|
481 |
+
def text_encoder_2_infer(self, text_input_ids):
|
482 |
+
text_input_encoder = pb_utils.Tensor("input_ids", np.array(text_input_ids))
|
483 |
+
|
484 |
+
inference_request = pb_utils.InferenceRequest(
|
485 |
+
model_name="text_encoder_2",
|
486 |
+
requested_output_names=["last_hidden_state"],
|
487 |
+
inputs=[text_input_encoder],
|
488 |
+
)
|
489 |
+
inference_response = inference_request.exec()
|
490 |
+
if inference_response.has_error():
|
491 |
+
raise pb_utils.TritonModelException(
|
492 |
+
inference_response.error().message()
|
493 |
+
)
|
494 |
+
|
495 |
+
output = pb_utils.get_output_tensor_by_name(
|
496 |
+
inference_response, "last_hidden_state"
|
497 |
+
)
|
498 |
+
return output
|
499 |
+
|
500 |
+
def encode_prompt(
|
501 |
+
self,
|
502 |
+
prompt: str,
|
503 |
+
prompt_2: Optional[str] = None,
|
504 |
+
num_images_per_prompt: int = 1,
|
505 |
+
do_classifier_free_guidance: bool = True,
|
506 |
+
negative_prompt: Optional[str] = None,
|
507 |
+
negative_prompt_2: Optional[str] = None,
|
508 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
509 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
510 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
511 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
512 |
+
clip_skip: Optional[int] = None,
|
513 |
+
):
|
514 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
515 |
+
|
516 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
517 |
+
|
518 |
+
if prompt_embeds is None:
|
519 |
+
# Prepare prompt_2
|
520 |
+
prompt_2 = prompt_2 or prompt
|
521 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
522 |
+
prompt_embeds_list = []
|
523 |
+
|
524 |
+
|
525 |
+
#Phrase 1 - prompt
|
526 |
+
text_input_ids = self.tokenizer_infer(prompt)
|
527 |
+
# untruncated_ids = self.tokenizer_infer(prompt)
|
528 |
+
prompt_embeds = self.text_encoder_infer(text_input_ids.cpu().numpy().astype(np.int32))
|
529 |
+
pooled_prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
530 |
+
if clip_skip is None:
|
531 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[-2])
|
532 |
+
else:
|
533 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[-(clip_skip + 2)])
|
534 |
+
prompt_embeds_list.append(prompt_embeds)
|
535 |
+
|
536 |
+
#Phrase 2 - prompt
|
537 |
+
text_input_ids = self.tokenizer_2_infer(prompt_2)
|
538 |
+
# untruncated_ids = self.tokenizer_2_infer(prompt_2)
|
539 |
+
prompt_embeds = self.text_encoder_2_infer(text_input_ids.cpu().numpy().astype(np.int64))
|
540 |
+
pooled_prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
541 |
+
if clip_skip is None:
|
542 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[-2])
|
543 |
+
else:
|
544 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[-(clip_skip + 2)])
|
545 |
+
prompt_embeds_list.append(prompt_embeds)
|
546 |
+
#End prompt
|
547 |
+
|
548 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
549 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
550 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
551 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
552 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
553 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
554 |
+
negative_prompt = negative_prompt or ""
|
555 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
556 |
+
|
557 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
558 |
+
negative_prompt_2 = (
|
559 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
560 |
+
)
|
561 |
+
|
562 |
+
uncond_tokens: List[str]
|
563 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
564 |
+
raise TypeError(
|
565 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
566 |
+
f" {type(prompt)}."
|
567 |
+
)
|
568 |
+
elif batch_size != len(negative_prompt):
|
569 |
+
raise ValueError(
|
570 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
571 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
572 |
+
" the batch size of `prompt`."
|
573 |
+
)
|
574 |
+
else:
|
575 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
576 |
+
|
577 |
+
#Phrase 1 - neg prompt
|
578 |
+
negative_prompt_embeds_list = []
|
579 |
+
max_length = prompt_embeds.shape[1]
|
580 |
+
uncond_input = self.tokenizer_infer(negative_prompt)
|
581 |
+
negative_prompt_embeds = self.text_encoder_2_infer(uncond_input.input_ids.cpu().numpy().astype(np.int32))
|
582 |
+
negative_pooled_prompt_embeds = torch.from_numpy(negative_prompt_embeds[0])
|
583 |
+
negative_prompt_embeds = torch.from_numpy(negative_prompt_embeds[-2])
|
584 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
585 |
+
|
586 |
+
#Phrase 2 - neg prompt
|
587 |
+
max_length = prompt_embeds.shape[1]
|
588 |
+
uncond_input = self.tokenizer_infer(negative_prompt)
|
589 |
+
negative_prompt_embeds = self.text_encoder_2_infer(uncond_input.input_ids.cpu().numpy().astype(np.int64))
|
590 |
+
negative_pooled_prompt_embeds = torch.from_numpy(negative_prompt_embeds[0])
|
591 |
+
negative_prompt_embeds = torch.from_numpy(negative_prompt_embeds[-2])
|
592 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
593 |
+
#End phrase
|
594 |
+
|
595 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
596 |
+
|
597 |
+
prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
|
598 |
+
|
599 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
600 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
601 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
602 |
+
|
603 |
+
if do_classifier_free_guidance:
|
604 |
+
seq_len = negative_prompt_embeds.shape[1]
|
605 |
+
|
606 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.dtype, device=self.device)
|
607 |
+
|
608 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
609 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
610 |
+
|
611 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
612 |
+
bs_embed * num_images_per_prompt, -1
|
613 |
+
)
|
614 |
+
if do_classifier_free_guidance:
|
615 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
616 |
+
bs_embed * num_images_per_prompt, -1
|
617 |
+
)
|
618 |
+
|
619 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
624 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
625 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
626 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
627 |
+
# and should be between [0, 1]
|
628 |
+
|
629 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
630 |
+
extra_step_kwargs = {}
|
631 |
+
if accepts_eta:
|
632 |
+
extra_step_kwargs["eta"] = eta
|
633 |
+
|
634 |
+
# check if the scheduler accepts generator
|
635 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
636 |
+
if accepts_generator:
|
637 |
+
extra_step_kwargs["generator"] = generator
|
638 |
+
return extra_step_kwargs
|
639 |
+
|
640 |
+
def randn_tensor(
|
641 |
+
self,
|
642 |
+
shape: Union[Tuple, List],
|
643 |
+
generator: Optional[Union[List["torch.Generator"], "torch.Generator"]] = None,
|
644 |
+
device: Optional["torch.device"] = None,
|
645 |
+
dtype: Optional["torch.dtype"] = None,
|
646 |
+
layout: Optional["torch.layout"] = None,
|
647 |
+
):
|
648 |
+
"""A helper function to create random tensors on the desired `device` with the desired `dtype`. When
|
649 |
+
passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
|
650 |
+
is always created on the CPU.
|
651 |
+
"""
|
652 |
+
# device on which tensor is created defaults to device
|
653 |
+
rand_device = device
|
654 |
+
batch_size = shape[0]
|
655 |
+
|
656 |
+
layout = layout or torch.strided
|
657 |
+
device = device or torch.device("cpu")
|
658 |
+
|
659 |
+
if generator is not None:
|
660 |
+
gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
|
661 |
+
if gen_device_type != device.type and gen_device_type == "cpu":
|
662 |
+
rand_device = "cpu"
|
663 |
+
if device != "mps":
|
664 |
+
self.logger.info(
|
665 |
+
f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
|
666 |
+
f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
|
667 |
+
f" slighly speed up this function by passing a generator that was created on the {device} device."
|
668 |
+
)
|
669 |
+
elif gen_device_type != device.type and gen_device_type == "cuda":
|
670 |
+
raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
|
671 |
+
|
672 |
+
if isinstance(generator, list):
|
673 |
+
shape = (1,) + shape[1:]
|
674 |
+
latents = [
|
675 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
|
676 |
+
for i in range(batch_size)
|
677 |
+
]
|
678 |
+
latents = torch.cat(latents, dim=0).to(device)
|
679 |
+
else:
|
680 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
|
681 |
+
|
682 |
+
return latents
|
683 |
+
|
684 |
+
def check_inputs(
|
685 |
+
self,
|
686 |
+
prompt,
|
687 |
+
prompt_2,
|
688 |
+
height,
|
689 |
+
width,
|
690 |
+
callback_steps,
|
691 |
+
negative_prompt=None,
|
692 |
+
negative_prompt_2=None,
|
693 |
+
prompt_embeds=None,
|
694 |
+
negative_prompt_embeds=None,
|
695 |
+
pooled_prompt_embeds=None,
|
696 |
+
negative_pooled_prompt_embeds=None,
|
697 |
+
ip_adapter_image=None,
|
698 |
+
ip_adapter_image_embeds=None,
|
699 |
+
callback_on_step_end_tensor_inputs=None,
|
700 |
+
):
|
701 |
+
if height % 8 != 0 or width % 8 != 0:
|
702 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
703 |
+
|
704 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
705 |
+
raise ValueError(
|
706 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
707 |
+
f" {type(callback_steps)}."
|
708 |
+
)
|
709 |
+
|
710 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
711 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
712 |
+
):
|
713 |
+
raise ValueError(
|
714 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
715 |
+
)
|
716 |
+
|
717 |
+
if prompt is not None and prompt_embeds is not None:
|
718 |
+
raise ValueError(
|
719 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
720 |
+
" only forward one of the two."
|
721 |
+
)
|
722 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
723 |
+
raise ValueError(
|
724 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
725 |
+
" only forward one of the two."
|
726 |
+
)
|
727 |
+
elif prompt is None and prompt_embeds is None:
|
728 |
+
raise ValueError(
|
729 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
730 |
+
)
|
731 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
732 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
733 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
734 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
735 |
+
|
736 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
737 |
+
raise ValueError(
|
738 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
739 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
740 |
+
)
|
741 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
742 |
+
raise ValueError(
|
743 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
744 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
745 |
+
)
|
746 |
+
|
747 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
748 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
749 |
+
raise ValueError(
|
750 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
751 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
752 |
+
f" {negative_prompt_embeds.shape}."
|
753 |
+
)
|
754 |
+
|
755 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
756 |
+
raise ValueError(
|
757 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
758 |
+
)
|
759 |
+
|
760 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
761 |
+
raise ValueError(
|
762 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
763 |
+
)
|
764 |
+
|
765 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
766 |
+
raise ValueError(
|
767 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
768 |
+
)
|
769 |
+
|
770 |
+
if ip_adapter_image_embeds is not None:
|
771 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
772 |
+
raise ValueError(
|
773 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
774 |
+
)
|
775 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
776 |
+
raise ValueError(
|
777 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
778 |
+
)
|
779 |
+
|
780 |
+
|
781 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
782 |
+
shape = (
|
783 |
+
batch_size,
|
784 |
+
num_channels_latents,
|
785 |
+
int(height) // self.vae_scale_factor,
|
786 |
+
int(width) // self.vae_scale_factor,
|
787 |
+
)
|
788 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
789 |
+
raise ValueError(
|
790 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
791 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
792 |
+
)
|
793 |
+
|
794 |
+
if latents is None:
|
795 |
+
latents = self.randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
796 |
+
else:
|
797 |
+
latents = latents.to(device)
|
798 |
+
|
799 |
+
latents = latents * self.scheduler.init_noise_sigma
|
800 |
+
return latents
|
801 |
+
|
802 |
+
|
803 |
+
def _get_add_time_ids(
|
804 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
805 |
+
):
|
806 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
807 |
+
passed_add_embed_dim = (
|
808 |
+
self.unet_configs['addition_time_embed_dim'] * len(add_time_ids) + text_encoder_projection_dim
|
809 |
+
)
|
810 |
+
expected_add_embed_dim = self.unet_configs['projection_class_embeddings_input_dim']
|
811 |
+
|
812 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
813 |
+
raise ValueError(
|
814 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
815 |
+
)
|
816 |
+
|
817 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
818 |
+
return add_time_ids
|
819 |
+
|
820 |
+
|
821 |
+
def get_guidance_scale_embedding(
|
822 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
823 |
+
) -> torch.Tensor:
|
824 |
+
assert len(w.shape) == 1
|
825 |
+
w = w * 1000.0
|
826 |
+
|
827 |
+
half_dim = embedding_dim // 2
|
828 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
829 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
830 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
831 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
832 |
+
if embedding_dim % 2 == 1: # zero pad
|
833 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
834 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
835 |
+
return emb
|
836 |
+
|
837 |
+
|
838 |
+
def read_json(self, json_path):
|
839 |
+
with open(json_path, 'r') as f:
|
840 |
+
data = json.load(f)
|
841 |
+
return data
|
842 |
+
|
843 |
+
def rescale_noise_cfg(self, noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
844 |
+
"""
|
845 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
846 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
847 |
+
"""
|
848 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
849 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
850 |
+
# rescale the results from guidance (fixes overexposure)
|
851 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
852 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
853 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
854 |
+
return noise_cfg
|
855 |
+
|
856 |
+
def retrieve_timesteps(
|
857 |
+
self,
|
858 |
+
scheduler,
|
859 |
+
num_inference_steps: Optional[int] = None,
|
860 |
+
device: Optional[Union[str, torch.device]] = None,
|
861 |
+
timesteps: Optional[List[int]] = None,
|
862 |
+
sigmas: Optional[List[float]] = None,
|
863 |
+
**kwargs,
|
864 |
+
):
|
865 |
+
"""
|
866 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
867 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
868 |
+
|
869 |
+
Args:
|
870 |
+
scheduler (`SchedulerMixin`):
|
871 |
+
The scheduler to get timesteps from.
|
872 |
+
num_inference_steps (`int`):
|
873 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
874 |
+
must be `None`.
|
875 |
+
device (`str` or `torch.device`, *optional*):
|
876 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
877 |
+
timesteps (`List[int]`, *optional*):
|
878 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
879 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
880 |
+
sigmas (`List[float]`, *optional*):
|
881 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
882 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
883 |
+
|
884 |
+
Returns:
|
885 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
886 |
+
second element is the number of inference steps.
|
887 |
+
"""
|
888 |
+
if timesteps is not None and sigmas is not None:
|
889 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
890 |
+
if timesteps is not None:
|
891 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
892 |
+
if not accepts_timesteps:
|
893 |
+
raise ValueError(
|
894 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
895 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
896 |
+
)
|
897 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
898 |
+
timesteps = scheduler.timesteps
|
899 |
+
num_inference_steps = len(timesteps)
|
900 |
+
elif sigmas is not None:
|
901 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
902 |
+
if not accept_sigmas:
|
903 |
+
raise ValueError(
|
904 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
905 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
906 |
+
)
|
907 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
908 |
+
timesteps = scheduler.timesteps
|
909 |
+
num_inference_steps = len(timesteps)
|
910 |
+
else:
|
911 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
912 |
+
timesteps = scheduler.timesteps
|
913 |
+
return timesteps, num_inference_steps
|
914 |
+
|
915 |
+
|
916 |
+
def execute(self, requests) -> "List[List[pb_utils.Tensor]]":
|
917 |
+
|
918 |
+
responses = []
|
919 |
+
|
920 |
+
for request in requests:
|
921 |
+
# client send binary data typed - convert back to string
|
922 |
+
prompt = [
|
923 |
+
t.decode("UTF-8")
|
924 |
+
for t in pb_utils.get_input_tensor_by_name(request, "PROMPT")
|
925 |
+
.as_numpy()
|
926 |
+
.tolist()
|
927 |
+
]
|
928 |
+
prompt_2 = [
|
929 |
+
t.decode("UTF-8")
|
930 |
+
for t in pb_utils.get_input_tensor_by_name(request, "PROMPT_2")
|
931 |
+
.as_numpy()
|
932 |
+
.tolist()
|
933 |
+
]
|
934 |
+
negative_prompt = [
|
935 |
+
t.decode("UTF-8")
|
936 |
+
for t in pb_utils.get_input_tensor_by_name(request, "NEGATIVE_PROMPT")
|
937 |
+
.as_numpy()
|
938 |
+
.tolist()
|
939 |
+
]
|
940 |
+
negative_prompt_2 = [
|
941 |
+
t.decode("UTF-8")
|
942 |
+
for t in pb_utils.get_input_tensor_by_name(request, "NEGATIVE_PROMPT_2")
|
943 |
+
.as_numpy()
|
944 |
+
.tolist()
|
945 |
+
]
|
946 |
+
cnext_model_name = [
|
947 |
+
t.decode("UTF-8")
|
948 |
+
for t in pb_utils.get_input_tensor_by_name(request, "CNEXT_MODEL_NAME")
|
949 |
+
.as_numpy()
|
950 |
+
.tolist()
|
951 |
+
][0]
|
952 |
+
controlnet_image = [
|
953 |
+
t
|
954 |
+
for t in pb_utils.get_input_tensor_by_name(request, "CNEXT_IMAGE")
|
955 |
+
.as_numpy()
|
956 |
+
.tolist()
|
957 |
+
]
|
958 |
+
ip_adapter_image = [
|
959 |
+
t
|
960 |
+
for t in pb_utils.get_input_tensor_by_name(request, "IP_ADAPTER_IMAGE")
|
961 |
+
.as_numpy()
|
962 |
+
.tolist()
|
963 |
+
]
|
964 |
+
self.guidance_scale = [
|
965 |
+
t
|
966 |
+
for t in pb_utils.get_input_tensor_by_name(request, "GUIDANCE_SCALE")
|
967 |
+
.as_numpy()
|
968 |
+
.tolist()
|
969 |
+
][0]
|
970 |
+
self.num_inference_steps = [
|
971 |
+
t
|
972 |
+
for t in pb_utils.get_input_tensor_by_name(request, "STEPS")
|
973 |
+
.as_numpy()
|
974 |
+
.tolist()
|
975 |
+
][0]
|
976 |
+
self.control_scale = [
|
977 |
+
t
|
978 |
+
for t in pb_utils.get_input_tensor_by_name(request, "CNEXT_CONDITIONAL_SCALE")
|
979 |
+
.as_numpy()
|
980 |
+
.tolist()
|
981 |
+
][0]
|
982 |
+
width = [
|
983 |
+
t
|
984 |
+
for t in pb_utils.get_input_tensor_by_name(request, "WIDTH")
|
985 |
+
.as_numpy()
|
986 |
+
.tolist()
|
987 |
+
]
|
988 |
+
height = [
|
989 |
+
t
|
990 |
+
for t in pb_utils.get_input_tensor_by_name(request, "HEIGHT")
|
991 |
+
.as_numpy()
|
992 |
+
.tolist()
|
993 |
+
]
|
994 |
+
seed = [
|
995 |
+
t
|
996 |
+
for t in pb_utils.get_input_tensor_by_name(request, "SEED")
|
997 |
+
.as_numpy()
|
998 |
+
.tolist()
|
999 |
+
][0]
|
1000 |
+
|
1001 |
+
#Check data input from user
|
1002 |
+
self.logger.log_info(f"############ GET REQUEST ############")
|
1003 |
+
self.logger.log_info(f"Prompt: {prompt}")
|
1004 |
+
self.logger.log_info(f"Prompt_2: {prompt_2}")
|
1005 |
+
self.logger.log_info(f"Neg-Prompt: {negative_prompt}")
|
1006 |
+
self.logger.log_info(f"Neg-Prompt_2: {negative_prompt_2}")
|
1007 |
+
self.logger.log_info(f"Cnext model name: {cnext_model_name}")
|
1008 |
+
self.logger.log_info(f"Cnext image shape: {controlnet_image.shape}")
|
1009 |
+
self.logger.log_info(f"IP image shape: {ip_adapter_image.shape}")
|
1010 |
+
|
1011 |
+
self.logger.log_info(f"guidance_scale: {self.guidance_scale.shape}")
|
1012 |
+
self.logger.log_info(f"num_inference_steps: {self.num_inference_steps.shape}")
|
1013 |
+
self.logger.log_info(f"control_scale: {self.control_scale.shape}")
|
1014 |
+
self.logger.log_info(f"width: {width.shape}")
|
1015 |
+
self.logger.log_info(f"height: {height.shape}")
|
1016 |
+
self.logger.log_info(f"seed: {seed.shape}")
|
1017 |
+
|
1018 |
+
|
1019 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1020 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1021 |
+
|
1022 |
+
original_size = original_size or (height, width)
|
1023 |
+
target_size = target_size or (height, width)
|
1024 |
+
|
1025 |
+
self.logger.log_info(f"############ Process ############")
|
1026 |
+
self.logger.log_info(f"width: {width.shape}")
|
1027 |
+
self.logger.log_info(f"height: {height.shape}")
|
1028 |
+
|
1029 |
+
# self._guidance_scale = self.guidance_scale
|
1030 |
+
# self._guidance_rescale = self.guidance_rescale
|
1031 |
+
# self._clip_skip = self.clip_skip
|
1032 |
+
# self._denoising_end = self.denoising_end
|
1033 |
+
# self._interrupt = False
|
1034 |
+
|
1035 |
+
if isinstance(prompt, str):
|
1036 |
+
batch_size = 1
|
1037 |
+
elif isinstance(prompt, list):
|
1038 |
+
batch_size = len(prompt)
|
1039 |
+
else:
|
1040 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
1041 |
+
|
1042 |
+
(
|
1043 |
+
prompt_embeds,
|
1044 |
+
negative_prompt_embeds,
|
1045 |
+
pooled_prompt_embeds,
|
1046 |
+
negative_pooled_prompt_embeds,
|
1047 |
+
) = self.encode_prompt(
|
1048 |
+
prompt=prompt,
|
1049 |
+
prompt_2=prompt_2,
|
1050 |
+
num_images_per_prompt=self.num_images_per_prompt,
|
1051 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1052 |
+
negative_prompt=negative_prompt,
|
1053 |
+
negative_prompt_2=negative_prompt_2,
|
1054 |
+
prompt_embeds=prompt_embeds,
|
1055 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1056 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1057 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1058 |
+
clip_skip=self.clip_skip,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
timesteps, num_inference_steps = self.retrieve_timesteps(
|
1062 |
+
self.scheduler, num_inference_steps, self.device, self.timesteps, self.sigmas
|
1063 |
+
)
|
1064 |
+
num_channels_latents = self.unet_configs['in_channels']
|
1065 |
+
|
1066 |
+
randome_seed = np.random.RandomState(seed) if seed > 0 else np.random
|
1067 |
+
torch_seed = randome_seed.randint(2147483647)
|
1068 |
+
torch_gen = torch.Generator().manual_seed(torch_seed)
|
1069 |
+
generator=torch_gen
|
1070 |
+
|
1071 |
+
latents = self.prepare_latents(
|
1072 |
+
batch_size * self.num_images_per_prompt,
|
1073 |
+
num_channels_latents,
|
1074 |
+
height,
|
1075 |
+
width,
|
1076 |
+
prompt_embeds.dtype,
|
1077 |
+
self.device,
|
1078 |
+
generator,
|
1079 |
+
latents,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, self.eta)
|
1083 |
+
|
1084 |
+
add_text_embeds = pooled_prompt_embeds
|
1085 |
+
if self.text_encoder_2 is None:
|
1086 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1087 |
+
else:
|
1088 |
+
text_encoder_projection_dim = self.text_encoder_2_configs['projection_dim']
|
1089 |
+
add_time_ids = self._get_add_time_ids(
|
1090 |
+
original_size,
|
1091 |
+
self.crops_coords_top_left,
|
1092 |
+
target_size,
|
1093 |
+
dtype=prompt_embeds.dtype,
|
1094 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
if self.negative_original_size is not None and self.negative_target_size is not None:
|
1098 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1099 |
+
self.negative_original_size,
|
1100 |
+
self.negative_crops_coords_top_left,
|
1101 |
+
self.negative_target_size,
|
1102 |
+
dtype=prompt_embeds.dtype,
|
1103 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1104 |
+
)
|
1105 |
+
else:
|
1106 |
+
negative_add_time_ids = add_time_ids
|
1107 |
+
|
1108 |
+
if ip_adapter_image is not None:
|
1109 |
+
#Call CLIPImageProcessor model.py
|
1110 |
+
# clip_image = self.clip_image_processor(images=ip_adapter_image, return_tensors="pt").pixel_values
|
1111 |
+
input_image_clip = Image.fromarray(ip_adapter_image)
|
1112 |
+
clip_image_processor_input = pb_utils.Tensor("IP_ADAPTER_IMAGE", input_image_clip)
|
1113 |
+
inference_request = pb_utils.InferenceRequest(
|
1114 |
+
model_name="clip_image_processor",
|
1115 |
+
requested_output_names=["pixel_values"],
|
1116 |
+
inputs=[clip_image_processor_input],
|
1117 |
+
)
|
1118 |
+
inference_response = inference_request.exec()
|
1119 |
+
if inference_response.has_error():
|
1120 |
+
raise pb_utils.TritonModelException(
|
1121 |
+
inference_response.error().message()
|
1122 |
+
)
|
1123 |
+
else:
|
1124 |
+
clip_image = pb_utils.get_output_tensor_by_name(
|
1125 |
+
inference_response, "pixel_values"
|
1126 |
+
)
|
1127 |
+
clip_image: torch.Tensor = torch.from_dlpack(clip_image.to_dlpack())
|
1128 |
+
|
1129 |
+
clip_image = clip_image.to(self.device, dtype=torch.float32)
|
1130 |
+
|
1131 |
+
#Call Image_encoder model.onnx
|
1132 |
+
# clip_image_embeds = self.image_encoder.run(None, {'image_embedding': clip_image[0].unsqueeze(0).cpu().numpy()})
|
1133 |
+
image_encoder_input = clip_image[0].unsqueeze(0).cpu().numpy()
|
1134 |
+
image_encoder_input_triton = pb_utils.Tensor("IMAGE_EMBEDDING", image_encoder_input)
|
1135 |
+
inference_request = pb_utils.InferenceRequest(
|
1136 |
+
model_name="image_encoder",
|
1137 |
+
requested_output_names=["image_encoder"],
|
1138 |
+
inputs=[image_encoder_input_triton],
|
1139 |
+
)
|
1140 |
+
inference_response = inference_request.exec()
|
1141 |
+
if inference_response.has_error():
|
1142 |
+
raise pb_utils.TritonModelException(
|
1143 |
+
inference_response.error().message()
|
1144 |
+
)
|
1145 |
+
else:
|
1146 |
+
clip_image_embeds = pb_utils.get_output_tensor_by_name(
|
1147 |
+
inference_response, "image_encoder"
|
1148 |
+
)
|
1149 |
+
clip_image_embeds: torch.Tensor = torch.from_dlpack(clip_image_embeds.to_dlpack())
|
1150 |
+
|
1151 |
+
|
1152 |
+
#Call Proj model.onnx
|
1153 |
+
# image_prompt_embeds = self.image_proj.run(None, {'clip_image_embeds': clip_image_embeds[0].astype(np.float32)})
|
1154 |
+
proj_image_input = clip_image_embeds[0].astype(np.float32)
|
1155 |
+
proj_iamge_input_triton = pb_utils.Tensor("CLIP_IMAGE_EMBEDS", proj_image_input)
|
1156 |
+
inference_request = pb_utils.InferenceRequest(
|
1157 |
+
model_name="proj",
|
1158 |
+
requested_output_names=["image_prompt_embeds"],
|
1159 |
+
inputs=[proj_iamge_input_triton],
|
1160 |
+
)
|
1161 |
+
inference_response = inference_request.exec()
|
1162 |
+
if inference_response.has_error():
|
1163 |
+
raise pb_utils.TritonModelException(
|
1164 |
+
inference_response.error().message()
|
1165 |
+
)
|
1166 |
+
else:
|
1167 |
+
image_prompt_embeds = pb_utils.get_output_tensor_by_name(
|
1168 |
+
inference_response, "image_prompt_embeds"
|
1169 |
+
)
|
1170 |
+
image_prompt_embeds: torch.Tensor = torch.from_dlpack(image_prompt_embeds.to_dlpack())
|
1171 |
+
|
1172 |
+
#Call Proj model.onnx
|
1173 |
+
# uncond_image_prompt_embeds = self.image_proj.run(None, {'clip_image_embeds': torch.zeros_like(torch.tensor(clip_image_embeds[0])).cpu().numpy().astype(np.float32)})
|
1174 |
+
proj_uncond_image_input = clip_image_embeds[0].astype(np.float32)
|
1175 |
+
proj_uncond_iamge_input_triton = pb_utils.Tensor("CLIP_IMAGE_EMBEDS", proj_uncond_image_input)
|
1176 |
+
inference_request = pb_utils.InferenceRequest(
|
1177 |
+
model_name="proj",
|
1178 |
+
requested_output_names=["image_prompt_embeds"],
|
1179 |
+
inputs=[proj_uncond_iamge_input_triton],
|
1180 |
+
)
|
1181 |
+
inference_response = inference_request.exec()
|
1182 |
+
if inference_response.has_error():
|
1183 |
+
raise pb_utils.TritonModelException(
|
1184 |
+
inference_response.error().message()
|
1185 |
+
)
|
1186 |
+
else:
|
1187 |
+
uncond_image_prompt_embeds = pb_utils.get_output_tensor_by_name(
|
1188 |
+
inference_response, "image_prompt_embeds"
|
1189 |
+
)
|
1190 |
+
uncond_image_prompt_embeds: torch.Tensor = torch.from_dlpack(uncond_image_prompt_embeds.to_dlpack())
|
1191 |
+
|
1192 |
+
|
1193 |
+
image_prompt_embeds = torch.from_numpy(image_prompt_embeds[0]).to(self.device)
|
1194 |
+
uncond_image_prompt_embeds = torch.from_numpy(uncond_image_prompt_embeds[0]).to(self.device)
|
1195 |
+
|
1196 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
1197 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, self.num_images_per_prompt, 1)
|
1198 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * self.num_images_per_prompt, seq_len, -1)
|
1199 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, self.num_images_per_prompt, 1)
|
1200 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * self.num_images_per_prompt, seq_len, -1)
|
1201 |
+
prompt_embeds = torch.cat([torch.zeros_like(prompt_embeds), image_prompt_embeds], dim=1)
|
1202 |
+
negative_prompt_embeds = torch.cat([torch.zeros_like(negative_prompt_embeds), uncond_image_prompt_embeds], dim=1)
|
1203 |
+
|
1204 |
+
if self.do_classifier_free_guidance:
|
1205 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1206 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1207 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1208 |
+
|
1209 |
+
prompt_embeds = prompt_embeds.to(self.device)
|
1210 |
+
add_text_embeds = add_text_embeds.to(self.device)
|
1211 |
+
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * self.num_images_per_prompt, 1)
|
1212 |
+
|
1213 |
+
if controlnet_image is not None and self.controlnet is not None:
|
1214 |
+
prepare_image_input = Image.fromarray(controlnet_image)
|
1215 |
+
controlnet_image = self.prepare_image(
|
1216 |
+
prepare_image_input,
|
1217 |
+
width,
|
1218 |
+
height,
|
1219 |
+
batch_size,
|
1220 |
+
self.num_images_per_prompt,
|
1221 |
+
self.device,
|
1222 |
+
self.dtype,
|
1223 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1224 |
+
)
|
1225 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1226 |
+
|
1227 |
+
if (
|
1228 |
+
self.denoising_end is not None
|
1229 |
+
and isinstance(self.denoising_end, float)
|
1230 |
+
and self.denoising_end > 0
|
1231 |
+
and self.denoising_end < 1
|
1232 |
+
):
|
1233 |
+
discrete_timestep_cutoff = int(
|
1234 |
+
round(
|
1235 |
+
self.scheduler.config.num_train_timesteps
|
1236 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1237 |
+
)
|
1238 |
+
)
|
1239 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1240 |
+
timesteps = timesteps[:num_inference_steps]
|
1241 |
+
|
1242 |
+
|
1243 |
+
|
1244 |
+
self._num_timesteps = len(timesteps)
|
1245 |
+
for i, t in enumerate(timesteps):
|
1246 |
+
print('Step:', i)
|
1247 |
+
if self.interrupt:
|
1248 |
+
continue
|
1249 |
+
|
1250 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1251 |
+
|
1252 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1253 |
+
|
1254 |
+
#Call cnext model.onnx
|
1255 |
+
# controls = self.controlnet.run(None, {'controlnext_image': controlnet_image.cpu().numpy(),
|
1256 |
+
# 'timestep': t.unsqueeze(0).cpu().numpy().astype(np.float32),})
|
1257 |
+
|
1258 |
+
input_cnext = [
|
1259 |
+
pb_utils.Tensor("controlnext_image", controlnet_image.cpu().numpy().astype(np.float32)),
|
1260 |
+
pb_utils.Tensor("timestep", t.unsqueeze(0).cpu().numpy().astype(np.float32)),
|
1261 |
+
]
|
1262 |
+
|
1263 |
+
inference_request = pb_utils.InferenceRequest(
|
1264 |
+
model_name=cnext_model_name,
|
1265 |
+
requested_output_names=['sample'],
|
1266 |
+
inputs=input_cnext,
|
1267 |
+
)
|
1268 |
+
inference_response = inference_request.exec()
|
1269 |
+
if inference_response.has_error():
|
1270 |
+
raise pb_utils.TritonModelException(
|
1271 |
+
inference_response.error().message())
|
1272 |
+
else:
|
1273 |
+
controls = pb_utils.get_output_tensor_by_name(
|
1274 |
+
inference_response, "sample"
|
1275 |
+
)
|
1276 |
+
controls: torch.Tensor = torch.from_dlpack(controls.to_dlpack())
|
1277 |
+
|
1278 |
+
scale = torch.tensor([self.control_scale])
|
1279 |
+
|
1280 |
+
|
1281 |
+
#Call the unet model.onnx
|
1282 |
+
input_unet = [
|
1283 |
+
pb_utils.Tensor("control_out", latent_model_input.cpu().numpy().astype(np.float32)),
|
1284 |
+
pb_utils.Tensor("timestep", t.unsqueeze(0).cpu().numpy().astype(np.float32)),
|
1285 |
+
pb_utils.Tensor("encoder_hidden_state", prompt_embeds.cpu().numpy().astype(np.float32)),
|
1286 |
+
pb_utils.Tensor("control_out", controls[0].astype(np.float32)),
|
1287 |
+
pb_utils.Tensor("control_scale", scale.cpu().numpy().astype(np.float32))
|
1288 |
+
]
|
1289 |
+
|
1290 |
+
inference_request = pb_utils.InferenceRequest(
|
1291 |
+
model_name=cnext_model_name,
|
1292 |
+
requested_output_names=['predict_noise'],
|
1293 |
+
inputs=input_unet,
|
1294 |
+
)
|
1295 |
+
inference_response = inference_request.exec()
|
1296 |
+
if inference_response.has_error():
|
1297 |
+
raise pb_utils.TritonModelException(
|
1298 |
+
inference_response.error().message())
|
1299 |
+
else:
|
1300 |
+
noise_pred = pb_utils.get_output_tensor_by_name(
|
1301 |
+
inference_response, "predict_noise"
|
1302 |
+
)
|
1303 |
+
noise_pred: torch.Tensor = torch.from_dlpack(noise_pred.to_dlpack())
|
1304 |
+
|
1305 |
+
noise_pred = torch.from_numpy(noise_pred[0]).to(self.device)
|
1306 |
+
|
1307 |
+
# perform guidance
|
1308 |
+
if self.do_classifier_free_guidance:
|
1309 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1310 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1311 |
+
|
1312 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1313 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1314 |
+
noise_pred = self.rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1315 |
+
|
1316 |
+
|
1317 |
+
latents_dtype = latents.dtype
|
1318 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1319 |
+
if latents.dtype != latents_dtype:
|
1320 |
+
if torch.backends.mps.is_available():
|
1321 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1322 |
+
latents = latents.to(latents_dtype)
|
1323 |
+
|
1324 |
+
if self.callback_on_step_end is not None:
|
1325 |
+
callback_kwargs = {}
|
1326 |
+
for k in self.callback_on_step_end_tensor_inputs:
|
1327 |
+
callback_kwargs[k] = locals()[k]
|
1328 |
+
callback_outputs = self.callback_on_step_end(self, i, t, callback_kwargs)
|
1329 |
+
|
1330 |
+
latents = callback_outputs.pop("latents", latents)
|
1331 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1332 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1333 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1334 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1335 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1336 |
+
)
|
1337 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1338 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1339 |
+
|
1340 |
+
if not self.output_type == "latent":
|
1341 |
+
'''needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1342 |
+
|
1343 |
+
if needs_upcasting:
|
1344 |
+
self.upcast_vae()
|
1345 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1346 |
+
elif latents.dtype != self.vae.dtype:
|
1347 |
+
if torch.backends.mps.is_available():
|
1348 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1349 |
+
self.vae = self.vae.to(latents.dtype)'''
|
1350 |
+
|
1351 |
+
has_latents_mean = hasattr(self.vae_configs, "latents_mean") and self.vae_configs['latents_mean'] is not None
|
1352 |
+
has_latents_std = hasattr(self.vae_configs, "latents_std") and self.vae_configs['latents_std'] is not None
|
1353 |
+
if has_latents_mean and has_latents_std:
|
1354 |
+
latents_mean = (
|
1355 |
+
torch.tensor(self.vae_configs['latents_mean']).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1356 |
+
)
|
1357 |
+
latents_std = (
|
1358 |
+
torch.tensor(self.vae_configs['latents_std']).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1359 |
+
)
|
1360 |
+
latents = latents * latents_std / self.vae_configs['scaling_factor'] + latents_mean
|
1361 |
+
else:
|
1362 |
+
latents = latents / self.vae_configs['scaling_factor']
|
1363 |
+
#Call VAE model.onnx
|
1364 |
+
# image = self.vae.run(None, {'latent_sample': latents.cpu().numpy()})[0]
|
1365 |
+
input_vae = [
|
1366 |
+
pb_utils.Tensor.from_dlpack(
|
1367 |
+
"latent_sample", latents.cpu().numpy().astype(np.float32)
|
1368 |
+
)
|
1369 |
+
]
|
1370 |
+
self.logger.log_warn(f"latent_sample for vae: {latents.shape}")
|
1371 |
+
self.logger.log_warn(f"latent_sample for vae: {type(latents)}")
|
1372 |
+
|
1373 |
+
inference_request = pb_utils.InferenceRequest(
|
1374 |
+
model_name="vae_decode",
|
1375 |
+
requested_output_names=["sample"],
|
1376 |
+
inputs=input_vae,
|
1377 |
+
)
|
1378 |
+
inference_response = inference_request.exec()
|
1379 |
+
if inference_response.has_error():
|
1380 |
+
raise pb_utils.TritonModelException(
|
1381 |
+
inference_response.error().message()
|
1382 |
+
)
|
1383 |
+
else:
|
1384 |
+
output = pb_utils.get_output_tensor_by_name(inference_response, "sample")
|
1385 |
+
image: torch.Tensor = torch.from_dlpack(output.to_dlpack())
|
1386 |
+
else:
|
1387 |
+
image = latents
|
1388 |
+
|
1389 |
+
image = image.cpu().numpy().astypee(np.float32)
|
1390 |
+
|
1391 |
+
tensor_output = [pb_utils.Tensor("IMAGES", image)]
|
1392 |
+
responses.append(pb_utils.InferenceResponse(tensor_output))
|
1393 |
+
return responses
|
1394 |
+
|
1395 |
+
def finalize(self) -> None:
|
1396 |
+
"""
|
1397 |
+
Called when the model is being unloaded from memory.
|
1398 |
+
"""
|
1399 |
+
pass
|
1400 |
+
|
1401 |
+
|
1402 |
+
|
1403 |
+
|
1404 |
+
|
1405 |
+
|
1406 |
+
|
1407 |
+
|
1408 |
+
|
1409 |
+
|
1410 |
+
|
Triton/bls_sdxl_cnext_ip_anime/config.pbtxt
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "bls_sdxl_cnext_ip_anime"
|
2 |
+
max_batch_size: 0
|
3 |
+
backend: "python"
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "PROMPT"
|
8 |
+
data_type: TYPE_STRING
|
9 |
+
dims: [ -1 ]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
name: "PROMPT_2"
|
13 |
+
data_type: TYPE_STRING
|
14 |
+
dims: [ -1 ]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
name: "NEGATIVE_PROMPT"
|
18 |
+
data_type: TYPE_STRING
|
19 |
+
dims: [ -1 ]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
name: "NEGATIVE_PROMPT_2"
|
23 |
+
data_type: TYPE_STRING
|
24 |
+
dims: [ -1 ]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
name: "CNEXT_MODEL_NAME"
|
28 |
+
data_type: TYPE_STRING
|
29 |
+
dims: [ -1 ]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
name: "CNEXT_IMAGE"
|
33 |
+
data_type: TYPE_FP32
|
34 |
+
dims: [-1, -1, 3]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
name: "IP_ADAPTER_IMAGE"
|
38 |
+
data_type: TYPE_FP32
|
39 |
+
dims: [-1, -1, 3]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
name: "GUIDANCE_SCALE"
|
43 |
+
data_type: TYPE_FP32
|
44 |
+
dims: [ -1 ]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
name: "STEPS"
|
48 |
+
data_type: TYPE_INT32
|
49 |
+
dims: [ -1 ]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
name: "CNEXT_CONDITIONAL_SCALE"
|
53 |
+
data_type: TYPE_FP32
|
54 |
+
dims: [ -1 ]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
name: "SEED"
|
58 |
+
data_type: TYPE_INT64
|
59 |
+
dims: [ -1 ]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
name: "HEIGHT"
|
63 |
+
data_type: TYPE_INT8 #Em xai` INT8 chac dc r anh ha, tai me thay no chi la 1 so 1024 thoi a
|
64 |
+
dims: [ -1 ]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
name: "WIDTH"
|
68 |
+
data_type: TYPE_INT8
|
69 |
+
dims: [ -1 ]
|
70 |
+
}
|
71 |
+
]
|
72 |
+
|
73 |
+
output [
|
74 |
+
{
|
75 |
+
name: "IMAGES"
|
76 |
+
data_type: TYPE_FP32
|
77 |
+
dims: [ -1 , -1, -1, -1]
|
78 |
+
}
|
79 |
+
]
|
80 |
+
|
81 |
+
instance_group [
|
82 |
+
{
|
83 |
+
kind: KIND_CPU
|
84 |
+
}
|
85 |
+
]
|
Triton/cnext_canny_anime/config.pbtxt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "cnext_canny_anime"
|
2 |
+
backend: "onnxruntime"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "timestep"
|
8 |
+
data_type: TYPE_FP32
|
9 |
+
dims: [1] # Fixed batch size
|
10 |
+
},
|
11 |
+
{
|
12 |
+
name: "controlnext_image"
|
13 |
+
data_type: TYPE_FP32
|
14 |
+
dims: [-1, 3, -1, -1] # Dynamic batch size, 3 channels, dynamic height, width
|
15 |
+
}
|
16 |
+
]
|
17 |
+
|
18 |
+
instance_group [
|
19 |
+
{
|
20 |
+
kind: KIND_CPU
|
21 |
+
}
|
22 |
+
]
|
23 |
+
|
24 |
+
optimization { execution_accelerators {
|
25 |
+
cpu_execution_accelerator : [ {
|
26 |
+
name : "openvino"
|
27 |
+
}]
|
28 |
+
}}
|
Triton/image_encoder/config.pbtxt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "image_encoder"
|
2 |
+
backend: "onnxruntime"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "image_embedding"
|
8 |
+
data_type: TYPE_FP32
|
9 |
+
dims: [-1, -1, -1, -1]
|
10 |
+
}
|
11 |
+
]
|
12 |
+
|
13 |
+
output [
|
14 |
+
{
|
15 |
+
name: "image_encoder"
|
16 |
+
data_type: TYPE_FP32
|
17 |
+
dims: [-1, 1280]
|
18 |
+
}
|
19 |
+
]
|
20 |
+
|
21 |
+
instance_group [
|
22 |
+
{
|
23 |
+
kind: KIND_CPU
|
24 |
+
}
|
25 |
+
]
|
26 |
+
|
27 |
+
optimization { execution_accelerators {
|
28 |
+
cpu_execution_accelerator : [ {
|
29 |
+
name : "openvino"
|
30 |
+
}]
|
31 |
+
}}
|
Triton/proj/config.pbtxt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "proj"
|
2 |
+
backend: "onnxruntime"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "clip_image_embeds"
|
8 |
+
data_type: TYPE_FP32
|
9 |
+
dims: [-1, -1]
|
10 |
+
}
|
11 |
+
]
|
12 |
+
|
13 |
+
output [
|
14 |
+
{
|
15 |
+
name: "image_prompt_embeds"
|
16 |
+
data_type: TYPE_FP32
|
17 |
+
dims: [-1, 4, 2048]
|
18 |
+
}
|
19 |
+
]
|
20 |
+
|
21 |
+
instance_group [
|
22 |
+
{
|
23 |
+
kind: KIND_CPU
|
24 |
+
}
|
25 |
+
]
|
26 |
+
|
27 |
+
optimization { execution_accelerators {
|
28 |
+
cpu_execution_accelerator : [ {
|
29 |
+
name : "openvino"
|
30 |
+
}]
|
31 |
+
}}
|
Triton/text_encoder/config.pbtxt
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "text_encoder"
|
2 |
+
platform: "onnxruntime_onnx"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "input_ids"
|
8 |
+
data_type: TYPE_INT32
|
9 |
+
dims: [-1, -1]
|
10 |
+
}
|
11 |
+
]
|
12 |
+
|
13 |
+
output [
|
14 |
+
{
|
15 |
+
name: "last_hidden_state"
|
16 |
+
data_type: TYPE_FP32
|
17 |
+
dims: [-1, -1, 768]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
name: "pooler_output"
|
21 |
+
data_type: TYPE_FP32
|
22 |
+
dims: [-1, 768]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
name: "hidden_states.0"
|
26 |
+
data_type: TYPE_FP32
|
27 |
+
dims: [-1, -1, 768]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
name: "hidden_states.1"
|
31 |
+
data_type: TYPE_FP32
|
32 |
+
dims: [-1, -1, 768]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
name: "hidden_states.2"
|
36 |
+
data_type: TYPE_FP32
|
37 |
+
dims: [-1, -1, 768]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
name: "hidden_states.3"
|
41 |
+
data_type: TYPE_FP32
|
42 |
+
dims: [-1, -1, 768]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
name: "hidden_states.4"
|
46 |
+
data_type: TYPE_FP32
|
47 |
+
dims: [-1, -1, 768]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
name: "hidden_states.5"
|
51 |
+
data_type: TYPE_FP32
|
52 |
+
dims: [-1, -1, 768]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
name: "hidden_states.6"
|
56 |
+
data_type: TYPE_FP32
|
57 |
+
dims: [-1, -1, 768]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
name: "hidden_states.7"
|
61 |
+
data_type: TYPE_FP32
|
62 |
+
dims: [-1, -1, 768]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
name: "hidden_states.8"
|
66 |
+
data_type: TYPE_FP32
|
67 |
+
dims: [-1, -1, 768]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
name: "hidden_states.9"
|
71 |
+
data_type: TYPE_FP32
|
72 |
+
dims: [-1, -1, 768]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
name: "hidden_states.10"
|
76 |
+
data_type: TYPE_FP32
|
77 |
+
dims: [-1, -1, 768]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
name: "hidden_states.11"
|
81 |
+
data_type: TYPE_FP32
|
82 |
+
dims: [-1, -1, 768]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
name: "hidden_states.12"
|
86 |
+
data_type: TYPE_FP32
|
87 |
+
dims: [-1, -1, 768]
|
88 |
+
}
|
89 |
+
]
|
90 |
+
|
91 |
+
instance_group [
|
92 |
+
{
|
93 |
+
kind: KIND_CPU
|
94 |
+
}
|
95 |
+
]
|
96 |
+
|
97 |
+
optimization {
|
98 |
+
execution_accelerators {
|
99 |
+
cpu_execution_accelerator: [
|
100 |
+
{
|
101 |
+
name: "openvino"
|
102 |
+
}
|
103 |
+
]
|
104 |
+
}
|
105 |
+
}
|
Triton/text_encoder_2/config.pbtxt
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "text_encoder_2"
|
2 |
+
platform: "onnxruntime_onnx"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "input_ids"
|
8 |
+
data_type: TYPE_INT64
|
9 |
+
dims: [-1, -1]
|
10 |
+
}
|
11 |
+
]
|
12 |
+
|
13 |
+
output [
|
14 |
+
{
|
15 |
+
name: "text_embeds"
|
16 |
+
data_type: TYPE_FP32
|
17 |
+
dims: [-1, 1280]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
name: "last_hidden_state"
|
21 |
+
data_type: TYPE_FP32
|
22 |
+
dims: [-1, -1, 1280]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
name: "hidden_states.0"
|
26 |
+
data_type: TYPE_FP32
|
27 |
+
dims: [-1, -1, 1280]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
name: "hidden_states.1"
|
31 |
+
data_type: TYPE_FP32
|
32 |
+
dims: [-1, -1, 1280]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
name: "hidden_states.2"
|
36 |
+
data_type: TYPE_FP32
|
37 |
+
dims: [-1, -1, 1280]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
name: "hidden_states.3"
|
41 |
+
data_type: TYPE_FP32
|
42 |
+
dims: [-1, -1, 1280]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
name: "hidden_states.4"
|
46 |
+
data_type: TYPE_FP32
|
47 |
+
dims: [-1, -1, 1280]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
name: "hidden_states.5"
|
51 |
+
data_type: TYPE_FP32
|
52 |
+
dims: [-1, -1, 1280]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
name: "hidden_states.6"
|
56 |
+
data_type: TYPE_FP32
|
57 |
+
dims: [-1, -1, 1280]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
name: "hidden_states.7"
|
61 |
+
data_type: TYPE_FP32
|
62 |
+
dims: [-1, -1, 1280]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
name: "hidden_states.8"
|
66 |
+
data_type: TYPE_FP32
|
67 |
+
dims: [-1, -1, 1280]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
name: "hidden_states.9"
|
71 |
+
data_type: TYPE_FP32
|
72 |
+
dims: [-1, -1, 1280]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
name: "hidden_states.10"
|
76 |
+
data_type: TYPE_FP32
|
77 |
+
dims: [-1, -1, 1280]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
name: "hidden_states.11"
|
81 |
+
data_type: TYPE_FP32
|
82 |
+
dims: [-1, -1, 1280]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
name: "hidden_states.12"
|
86 |
+
data_type: TYPE_FP32
|
87 |
+
dims: [-1, -1, 1280]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
name: "hidden_states.13"
|
91 |
+
data_type: TYPE_FP32
|
92 |
+
dims: [-1, -1, 1280]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
name: "hidden_states.14"
|
96 |
+
data_type: TYPE_FP32
|
97 |
+
dims: [-1, -1, 1280]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
name: "hidden_states.15"
|
101 |
+
data_type: TYPE_FP32
|
102 |
+
dims: [-1, -1, 1280]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
name: "hidden_states.16"
|
106 |
+
data_type: TYPE_FP32
|
107 |
+
dims: [-1, -1, 1280]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
name: "hidden_states.17"
|
111 |
+
data_type: TYPE_FP32
|
112 |
+
dims: [-1, -1, 1280]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
name: "hidden_states.18"
|
116 |
+
data_type: TYPE_FP32
|
117 |
+
dims: [-1, -1, 1280]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
name: "hidden_states.19"
|
121 |
+
data_type: TYPE_FP32
|
122 |
+
dims: [-1, -1, 1280]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
name: "hidden_states.20"
|
126 |
+
data_type: TYPE_FP32
|
127 |
+
dims: [-1, -1, 1280]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
name: "hidden_states.21"
|
131 |
+
data_type: TYPE_FP32
|
132 |
+
dims: [-1, -1, 1280]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
name: "hidden_states.22"
|
136 |
+
data_type: TYPE_FP32
|
137 |
+
dims: [-1, -1, 1280]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
name: "hidden_states.23"
|
141 |
+
data_type: TYPE_FP32
|
142 |
+
dims: [-1, -1, 1280]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
name: "hidden_states.24"
|
146 |
+
data_type: TYPE_FP32
|
147 |
+
dims: [-1, -1, 1280]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
name: "hidden_states.25"
|
151 |
+
data_type: TYPE_FP32
|
152 |
+
dims: [-1, -1, 1280]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
name: "hidden_states.26"
|
156 |
+
data_type: TYPE_FP32
|
157 |
+
dims: [-1, -1, 1280]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
name: "hidden_states.27"
|
161 |
+
data_type: TYPE_FP32
|
162 |
+
dims: [-1, -1, 1280]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
name: "hidden_states.28"
|
166 |
+
data_type: TYPE_FP32
|
167 |
+
dims: [-1, -1, 1280]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
name: "hidden_states.29"
|
171 |
+
data_type: TYPE_FP32
|
172 |
+
dims: [-1, -1, 1280]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
name: "hidden_states.30"
|
176 |
+
data_type: TYPE_FP32
|
177 |
+
dims: [-1, -1, 1280]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
name: "hidden_states.31"
|
181 |
+
data_type: TYPE_FP32
|
182 |
+
dims: [-1, -1, 1280]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
name: "hidden_states.32"
|
186 |
+
data_type: TYPE_FP32
|
187 |
+
dims: [-1, -1, 1280]
|
188 |
+
}
|
189 |
+
]
|
190 |
+
|
191 |
+
instance_group [
|
192 |
+
{
|
193 |
+
kind: KIND_CPU
|
194 |
+
}
|
195 |
+
]
|
196 |
+
|
197 |
+
optimization {
|
198 |
+
execution_accelerators {
|
199 |
+
cpu_execution_accelerator: [
|
200 |
+
{
|
201 |
+
name: "openvino"
|
202 |
+
}
|
203 |
+
]
|
204 |
+
}
|
205 |
+
}
|
Triton/tokenizer/1/__pycache__/model.cpython-310.pyc
ADDED
Binary file (2.32 kB). View file
|
|
Triton/tokenizer/1/config/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Triton/tokenizer/1/config/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
Triton/tokenizer/1/config/tokenizer_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"tokenizer_class": "CLIPTokenizer",
|
29 |
+
"unk_token": "<|endoftext|>"
|
30 |
+
}
|
Triton/tokenizer/1/config/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Triton/tokenizer/1/model.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
from typing import Dict, List
|
5 |
+
from transformers import CLIPTokenizer
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Callable, List, Optional, Union, Dict
|
8 |
+
import numpy as np
|
9 |
+
import triton_python_backend_utils as pb_utils
|
10 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, TensorType
|
11 |
+
|
12 |
+
|
13 |
+
class TritonPythonModel:
|
14 |
+
def initialize(self, args: Dict[str, str]):
|
15 |
+
current_name: str = str(Path(args["model_repository"]).parent.absolute())
|
16 |
+
|
17 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
18 |
+
current_name + "/tokenizer/1/config/"
|
19 |
+
)
|
20 |
+
|
21 |
+
def execute(self, requests) -> "List[List[pb_utils.Tensor]]":
|
22 |
+
"""
|
23 |
+
Parse and tokenize each request
|
24 |
+
:param requests: 1 or more requests received by Triton server.
|
25 |
+
:return: text as input tensors
|
26 |
+
"""
|
27 |
+
responses = []
|
28 |
+
# TODO: update to process batch requests
|
29 |
+
for request in requests:
|
30 |
+
# binary data typed back to string
|
31 |
+
query = [
|
32 |
+
t.decode("UTF-8")
|
33 |
+
for t in pb_utils.get_input_tensor_by_name(request, "TEXT")
|
34 |
+
.as_numpy()
|
35 |
+
.tolist()
|
36 |
+
]
|
37 |
+
|
38 |
+
# tokenization
|
39 |
+
text_input_ids = self.tokenizer(
|
40 |
+
query,
|
41 |
+
padding="max_length",
|
42 |
+
max_length=self.tokenizer.model_max_length,
|
43 |
+
truncation=True,
|
44 |
+
return_tensors="np",
|
45 |
+
).input_ids.astype(np.int32)
|
46 |
+
|
47 |
+
# raw tokenization without truncation
|
48 |
+
untruncated_ids = self.tokenizer(
|
49 |
+
query,
|
50 |
+
padding="max_length",
|
51 |
+
return_tensors="np"
|
52 |
+
).input_ids.astype(np.int32)
|
53 |
+
|
54 |
+
# only for logging
|
55 |
+
if not np.array_equal(text_input_ids, untruncated_ids):
|
56 |
+
removed_text = self.tokenizer.batch_decode(
|
57 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
58 |
+
)
|
59 |
+
self.logger.log_warn(
|
60 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
61 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
62 |
+
)
|
63 |
+
|
64 |
+
# communicate the tokenization results to Triton server
|
65 |
+
tensor_output = pb_utils.Tensor('input_ids', text_input_ids)
|
66 |
+
inference_response = pb_utils.InferenceResponse(output_tensors=[tensor_output])
|
67 |
+
responses.append(inference_response)
|
68 |
+
|
69 |
+
return responses
|
Triton/tokenizer/config.pbtxt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "tokenizer"
|
2 |
+
max_batch_size: 0
|
3 |
+
backend: "python"
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "TEXT"
|
8 |
+
data_type: TYPE_STRING
|
9 |
+
dims: [ -1 ]
|
10 |
+
}
|
11 |
+
]
|
12 |
+
|
13 |
+
output [
|
14 |
+
{
|
15 |
+
name: "input_ids"
|
16 |
+
data_type: TYPE_INT32
|
17 |
+
dims: [-1, -1]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
name: "attention_mask"
|
21 |
+
data_type: TYPE_INT32
|
22 |
+
dims: [-1, -1]
|
23 |
+
}
|
24 |
+
]
|
25 |
+
|
26 |
+
instance_group [
|
27 |
+
{
|
28 |
+
kind: KIND_CPU
|
29 |
+
}
|
30 |
+
]
|
Triton/tokenizer_2/1/__pycache__/model.cpython-310.pyc
ADDED
Binary file (2.32 kB). View file
|
|
Triton/tokenizer_2/1/config/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Triton/tokenizer_2/1/config/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "!",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
Triton/tokenizer_2/1/config/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "!",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49406": {
|
13 |
+
"content": "<|startoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49407": {
|
21 |
+
"content": "<|endoftext|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"bos_token": "<|startoftext|>",
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"do_lower_case": true,
|
32 |
+
"eos_token": "<|endoftext|>",
|
33 |
+
"errors": "replace",
|
34 |
+
"model_max_length": 77,
|
35 |
+
"pad_token": "!",
|
36 |
+
"tokenizer_class": "CLIPTokenizer",
|
37 |
+
"unk_token": "<|endoftext|>"
|
38 |
+
}
|
Triton/tokenizer_2/1/config/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Triton/tokenizer_2/1/model.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
from typing import Dict, List
|
5 |
+
from transformers import CLIPTokenizer
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Callable, List, Optional, Union, Dict
|
8 |
+
import numpy as np
|
9 |
+
import triton_python_backend_utils as pb_utils
|
10 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, TensorType
|
11 |
+
|
12 |
+
|
13 |
+
class TritonPythonModel:
|
14 |
+
def initialize(self, args: Dict[str, str]):
|
15 |
+
current_name: str = str(Path(args["model_repository"]).parent.absolute())
|
16 |
+
|
17 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
18 |
+
current_name + "/tokenizer_2/1/config/"
|
19 |
+
)
|
20 |
+
|
21 |
+
def execute(self, requests) -> "List[List[pb_utils.Tensor]]":
|
22 |
+
"""
|
23 |
+
Parse and tokenize each request
|
24 |
+
:param requests: 1 or more requests received by Triton server.
|
25 |
+
:return: text as input tensors
|
26 |
+
"""
|
27 |
+
responses = []
|
28 |
+
# TODO: update to process batch requests
|
29 |
+
for request in requests:
|
30 |
+
# binary data typed back to string
|
31 |
+
query = [
|
32 |
+
t.decode("UTF-8")
|
33 |
+
for t in pb_utils.get_input_tensor_by_name(request, "TEXT")
|
34 |
+
.as_numpy()
|
35 |
+
.tolist()
|
36 |
+
]
|
37 |
+
|
38 |
+
# tokenization
|
39 |
+
text_input_ids = self.tokenizer(
|
40 |
+
query,
|
41 |
+
padding="max_length",
|
42 |
+
max_length=self.tokenizer.model_max_length,
|
43 |
+
truncation=True,
|
44 |
+
return_tensors="np",
|
45 |
+
).input_ids.astype(np.int32)
|
46 |
+
|
47 |
+
# raw tokenization without truncation
|
48 |
+
untruncated_ids = self.tokenizer(
|
49 |
+
query,
|
50 |
+
padding="max_length",
|
51 |
+
return_tensors="np"
|
52 |
+
).input_ids.astype(np.int32)
|
53 |
+
|
54 |
+
# only for logging
|
55 |
+
if not np.array_equal(text_input_ids, untruncated_ids):
|
56 |
+
removed_text = self.tokenizer.batch_decode(
|
57 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
58 |
+
)
|
59 |
+
self.logger.log_warn(
|
60 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
61 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
62 |
+
)
|
63 |
+
|
64 |
+
# communicate the tokenization results to Triton server
|
65 |
+
tensor_output = pb_utils.Tensor('input_ids', text_input_ids)
|
66 |
+
inference_response = pb_utils.InferenceResponse(output_tensors=[tensor_output])
|
67 |
+
responses.append(inference_response)
|
68 |
+
|
69 |
+
return responses
|
Triton/tokenizer_2/config.pbtxt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "tokenizer_2"
|
2 |
+
max_batch_size: 0
|
3 |
+
backend: "python"
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "TEXT"
|
8 |
+
data_type: TYPE_STRING
|
9 |
+
dims: [ -1 ]
|
10 |
+
}
|
11 |
+
]
|
12 |
+
|
13 |
+
output [
|
14 |
+
{
|
15 |
+
name: "input_ids"
|
16 |
+
data_type: TYPE_INT32
|
17 |
+
dims: [-1, -1]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
name: "attention_mask"
|
21 |
+
data_type: TYPE_INT32
|
22 |
+
dims: [-1, -1]
|
23 |
+
}
|
24 |
+
]
|
25 |
+
|
26 |
+
instance_group [
|
27 |
+
{
|
28 |
+
kind: KIND_CPU
|
29 |
+
}
|
30 |
+
]
|
Triton/unet/config.pbtxt
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "unet"
|
2 |
+
backend: "onnxruntime"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "control_out"
|
8 |
+
data_type: TYPE_FP32
|
9 |
+
dims: [-1, 320, 128, 128] # Dynamic batch size
|
10 |
+
},
|
11 |
+
{
|
12 |
+
name: "encoder_hidden_state"
|
13 |
+
data_type: TYPE_FP32
|
14 |
+
dims: [-1, -1, -1] # Dynamic batch size
|
15 |
+
},
|
16 |
+
{
|
17 |
+
name: "sample"
|
18 |
+
data_type: TYPE_FP32
|
19 |
+
dims: [-1, 4, 128, 128] # Dynamic batch size
|
20 |
+
},
|
21 |
+
{
|
22 |
+
name: "timestep"
|
23 |
+
data_type: TYPE_FP32
|
24 |
+
dims: [1] # Dynamic batch size
|
25 |
+
},
|
26 |
+
{
|
27 |
+
name: "control_scale"
|
28 |
+
data_type: TYPE_FP32
|
29 |
+
dims: [1] # Dynamic batch size
|
30 |
+
}
|
31 |
+
]
|
32 |
+
output [
|
33 |
+
{
|
34 |
+
name: "predict_noise"
|
35 |
+
data_type: TYPE_FP32
|
36 |
+
dims: [-1, 4, 128, 128] # Dynamic batch size
|
37 |
+
}
|
38 |
+
]
|
39 |
+
instance_group [
|
40 |
+
{
|
41 |
+
kind: KIND_CPU
|
42 |
+
}
|
43 |
+
]
|
44 |
+
|
45 |
+
optimization { execution_accelerators {
|
46 |
+
cpu_execution_accelerator : [ {
|
47 |
+
name : "openvino"
|
48 |
+
}]
|
49 |
+
}}
|
Triton/vae_decoder/config.pbtxt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "vae_decoder"
|
2 |
+
backend: "onnxruntime"
|
3 |
+
max_batch_size: 0
|
4 |
+
|
5 |
+
input [
|
6 |
+
{
|
7 |
+
name: "latent_sample"
|
8 |
+
data_type: TYPE_FP32
|
9 |
+
dims: [-1, 4, -1, -1] # Dynamic batch size
|
10 |
+
}
|
11 |
+
]
|
12 |
+
output [
|
13 |
+
{
|
14 |
+
name: "sample"
|
15 |
+
data_type: TYPE_FP32
|
16 |
+
dims: [-1, 3, -1, -1] # Dynamic batch size
|
17 |
+
}
|
18 |
+
]
|
19 |
+
instance_group [
|
20 |
+
{
|
21 |
+
kind: KIND_CPU
|
22 |
+
}
|
23 |
+
]
|
24 |
+
|
25 |
+
optimization { execution_accelerators {
|
26 |
+
cpu_execution_accelerator : [ {
|
27 |
+
name : "openvino"
|
28 |
+
}]
|
29 |
+
}}
|