wei commited on
Commit
4053784
·
1 Parent(s): 3921112

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -5,3 +5,77 @@ widget:
5
  - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end"
6
 
7
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end"
6
 
7
  ---
8
+
9
+
10
+
11
+ # CodeTrans model for code documentation generation ruby
12
+ Pretrained model on programming language ruby using the t5 base model architecture. It was first released in
13
+ [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions.
14
+
15
+
16
+ ## Model description
17
+
18
+ This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the ruby function/method.
19
+
20
+ ## Intended uses & limitations
21
+
22
+ The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better.
23
+
24
+ ### How to use
25
+
26
+ Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline:
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
30
+
31
+ pipeline = SummarizationPipeline(
32
+ model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune"),
33
+ tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune", skip_special_tokens=True),
34
+ device=0
35
+ )
36
+
37
+ tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end"
38
+ pipeline([tokenized_code])
39
+ ```
40
+ Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/ruby/base_model.ipynb).
41
+ ## Training data
42
+
43
+ The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
44
+
45
+ ## Training procedure
46
+
47
+ ### Multi-task Pretraining
48
+
49
+ The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096).
50
+ It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
51
+ The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
52
+
53
+ ### Fine-tuning
54
+
55
+ This model was then fine-tuned on a single TPU Pod V2-8 for 12,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code.
56
+
57
+
58
+ ## Evaluation results
59
+
60
+ For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
61
+
62
+ Test results :
63
+
64
+ | Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
65
+ | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: |
66
+ | ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
67
+ | ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
68
+ | TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
69
+ | TF-Base | 20.26 | 20.19 | **19.50** | 25.84 | 14.07 | 18.25 |
70
+ | TF-Large | XX | XX | XX | XX | XX | XX |
71
+ | MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
72
+ | MT-Base | **20.39** | **21.22** | 19.43 | **26.23** | **15.26** | 16.11 |
73
+ | MT-Large | XX | XX | XX | XX | XX | XX |
74
+ | MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
75
+ | MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | **18.62** |
76
+ | MT-TF-Large | XX | XX | XX | XX | XX | XX |
77
+ | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
78
+
79
+
80
+ > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
81
+