wei commited on
Commit
dec6261
·
1 Parent(s): cae1f00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md CHANGED
@@ -5,3 +5,64 @@ widget:
5
  - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
6
 
7
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
6
 
7
  ---
8
+
9
+
10
+
11
+ # CodeTrans model for source code summarization csharp
12
+ Pretrained model on programming language csharp using the t5 base model architecture. It was first released in
13
+ [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions.
14
+
15
+
16
+ ## Model description
17
+
18
+ This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on source code summarization csharp dataset.
19
+
20
+ ## Intended uses & limitations
21
+
22
+ The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better.
23
+
24
+ ### How to use
25
+
26
+ Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline:
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
30
+
31
+ pipeline = SummarizationPipeline(
32
+ model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp"),
33
+ tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp", skip_special_tokens=True),
34
+ device=0
35
+ )
36
+
37
+ tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
38
+ pipeline([tokenized_code])
39
+ ```
40
+ Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/source%20code%20summarization/csharp/base_model.ipynb).
41
+ ## Training data
42
+
43
+ The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
44
+
45
+
46
+ ## Evaluation results
47
+
48
+ For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score):
49
+
50
+ Test results :
51
+
52
+ | Language / Model | Python | SQL | C# |
53
+ | -------------------- | :------------: | :------------: | :------------: |
54
+ | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 |
55
+ | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 |
56
+ | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 |
57
+ | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 |
58
+ | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 |
59
+ | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 |
60
+ | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 |
61
+ | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** |
62
+ | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 |
63
+ | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 |
64
+ | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 |
65
+ | CODE-NN | -- | 18.40 | 20.50 |
66
+
67
+
68
+ > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)