wei commited on
Commit
16051b4
·
1 Parent(s): 0d02f66

Update from weiding

Browse files
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - summarization
4
+ widget:
5
+ - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
6
+
7
+ ---
8
+
9
+
10
+ # CodeTrans model for source code summarization csharp
11
+ Pretrained model on programming language csharp using the t5 large model architecture. It was first released in
12
+ [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions.
13
+
14
+
15
+ ## Model description
16
+
17
+ This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the csharp code snippets.
18
+
19
+
20
+
21
+ ## Intended uses & limitations
22
+
23
+ The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better.
24
+
25
+ ### How to use
26
+
27
+ Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline:
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
31
+
32
+ pipeline = SummarizationPipeline(
33
+ model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask_finetune"),
34
+ tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask_finetune", skip_special_tokens=True),
35
+ device=0
36
+ )
37
+
38
+ tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
39
+ pipeline([tokenized_code])
40
+ ```
41
+ Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/csharp/large_model.ipynb).
42
+ ## Training data
43
+
44
+ The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
45
+
46
+
47
+ ## Training procedure
48
+
49
+ ### Multi-task Pretraining
50
+
51
+ The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096).
52
+ It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
53
+ The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
54
+
55
+ ### Fine-tuning
56
+
57
+ This model was then fine-tuned on a single TPU Pod V2-8 for 100 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code.
58
+
59
+
60
+ ## Evaluation results
61
+
62
+ For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score):
63
+
64
+ Test results :
65
+
66
+ | Language / Model | Python | SQL | C# |
67
+ | -------------------- | :------------: | :------------: | :------------: |
68
+ | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 |
69
+ | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 |
70
+ | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 |
71
+ | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 |
72
+ | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 |
73
+ | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 |
74
+ | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 |
75
+ | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** |
76
+ | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 |
77
+ | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 |
78
+ | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 |
79
+ | CODE-NN | -- | 18.40 | 20.50 |
80
+
81
+
82
+ > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
83
+
84
+
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "T5Model"
4
+ ],
5
+ "d_ff": 4096,
6
+ "d_kv": 64,
7
+ "d_model": 1024,
8
+ "decoder_start_token_id": 0,
9
+ "dropout_rate": 0.1,
10
+ "eos_token_id": 1,
11
+ "initializer_factor": 1.0,
12
+ "is_encoder_decoder": true,
13
+ "layer_norm_epsilon": 1e-06,
14
+ "model_type": "t5",
15
+ "n_positions": 512,
16
+ "num_decoder_layers": 24,
17
+ "num_heads": 16,
18
+ "num_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "relative_attention_num_buckets": 32,
22
+ "task_specific_params": {
23
+ "summarization": {
24
+ "max_length": 512,
25
+ "num_beams": 4,
26
+ "prefix": "source code summarization csharp: "
27
+ }
28
+ },
29
+ "vocab_size": 32128
30
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a7ac6d06654adcc711f57b1539dd1ccb53d0c4150444910e1e14a6fadccd0a
3
+ size 2950910481
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9856b76e9978cc5805f0566cedabd2fc7bdb1a3ee22d52545100c056cb09a59c
3
+ size 797030
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false}