wei
commited on
Commit
·
f702d98
1
Parent(s):
5ec9a19
Update from weiding
Browse files- README.md +84 -0
- config.json +30 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
widget:
|
5 |
+
- text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
# CodeTrans model for source code summarization csharp
|
11 |
+
Pretrained model on programming language csharp using the t5 large model architecture. It was first released in
|
12 |
+
[this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions.
|
13 |
+
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
|
17 |
+
This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the csharp code snippets.
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
## Intended uses & limitations
|
22 |
+
|
23 |
+
The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better.
|
24 |
+
|
25 |
+
### How to use
|
26 |
+
|
27 |
+
Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
|
31 |
+
|
32 |
+
pipeline = SummarizationPipeline(
|
33 |
+
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_transfer_learning_finetune"),
|
34 |
+
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_transfer_learning_finetune", skip_special_tokens=True),
|
35 |
+
device=0
|
36 |
+
)
|
37 |
+
|
38 |
+
tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
|
39 |
+
pipeline([tokenized_code])
|
40 |
+
```
|
41 |
+
Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/csharp/large_model.ipynb).
|
42 |
+
## Training data
|
43 |
+
|
44 |
+
The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
|
45 |
+
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Transfer-learning Pretraining
|
50 |
+
|
51 |
+
The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096).
|
52 |
+
It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
|
53 |
+
The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
|
54 |
+
|
55 |
+
### Fine-tuning
|
56 |
+
|
57 |
+
This model was then fine-tuned on a single TPU Pod V2-8 for 200 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code.
|
58 |
+
|
59 |
+
|
60 |
+
## Evaluation results
|
61 |
+
|
62 |
+
For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score):
|
63 |
+
|
64 |
+
Test results :
|
65 |
+
|
66 |
+
| Language / Model | Python | SQL | C# |
|
67 |
+
| -------------------- | :------------: | :------------: | :------------: |
|
68 |
+
| CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 |
|
69 |
+
| CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 |
|
70 |
+
| CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 |
|
71 |
+
| CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 |
|
72 |
+
| CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 |
|
73 |
+
| CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 |
|
74 |
+
| CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 |
|
75 |
+
| CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** |
|
76 |
+
| CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 |
|
77 |
+
| CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 |
|
78 |
+
| CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 |
|
79 |
+
| CODE-NN | -- | 18.40 | 20.50 |
|
80 |
+
|
81 |
+
|
82 |
+
> Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
|
83 |
+
|
84 |
+
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"T5Model"
|
4 |
+
],
|
5 |
+
"d_ff": 4096,
|
6 |
+
"d_kv": 64,
|
7 |
+
"d_model": 1024,
|
8 |
+
"decoder_start_token_id": 0,
|
9 |
+
"dropout_rate": 0.1,
|
10 |
+
"eos_token_id": 1,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"is_encoder_decoder": true,
|
13 |
+
"layer_norm_epsilon": 1e-06,
|
14 |
+
"model_type": "t5",
|
15 |
+
"n_positions": 512,
|
16 |
+
"num_decoder_layers": 24,
|
17 |
+
"num_heads": 16,
|
18 |
+
"num_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"relative_attention_num_buckets": 32,
|
22 |
+
"task_specific_params": {
|
23 |
+
"summarization": {
|
24 |
+
"max_length": 512,
|
25 |
+
"num_beams": 4,
|
26 |
+
"prefix": "function documentation generation csharp: "
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"vocab_size": 32128
|
30 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d7e2a478e2ac772a4cbf3c374171dbdd7686e971450867558e1697ee2b94e07
|
3 |
+
size 2950910481
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9856b76e9978cc5805f0566cedabd2fc7bdb1a3ee22d52545100c056cb09a59c
|
3 |
+
size 797030
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false}
|