lbourdois commited on
Commit
f678f35
·
1 Parent(s): 9811051

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1 -78
README.md CHANGED
@@ -1,80 +1,3 @@
1
  ---
2
- tags:
3
- - summarization
4
- widget:
5
- - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
6
-
7
  ---
8
-
9
-
10
- # CodeTrans model for code documentation generation python
11
- Pretrained model on programming language python using the t5 small model architecture. It was first released in
12
- [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions.
13
-
14
-
15
- ## Model description
16
-
17
- This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the python function/method.
18
-
19
- ## Intended uses & limitations
20
-
21
- The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better.
22
-
23
- ### How to use
24
-
25
- Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline:
26
-
27
- ```python
28
- from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
29
-
30
- pipeline = SummarizationPipeline(
31
- model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune"),
32
- tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune", skip_special_tokens=True),
33
- device=0
34
- )
35
-
36
- tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
37
- pipeline([tokenized_code])
38
- ```
39
- Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/python/small_model.ipynb).
40
- ## Training data
41
-
42
- The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
43
-
44
- ## Training procedure
45
-
46
- ### Transfer-learning Pretraining
47
-
48
- The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096).
49
- It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
50
- The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
51
-
52
- ### Fine-tuning
53
-
54
- This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code.
55
-
56
-
57
- ## Evaluation results
58
-
59
- For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
60
-
61
- Test results :
62
-
63
- | Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
64
- | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: |
65
- | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
66
- | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
67
- | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
68
- | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
69
- | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** |
70
- | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
71
- | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 |
72
- | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 |
73
- | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
74
- | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
75
- | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
76
- | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
77
-
78
-
79
- > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
80
-
 
1
  ---
2
+ language: code
 
 
 
 
3
  ---