File size: 2,913 Bytes
969a6e8 c1174ba 969a6e8 36c02b0 8a5b1a4 9d03ecb 969a6e8 5b3e04a 969a6e8 8a5b1a4 969a6e8 39d4590 969a6e8 8a5b1a4 969a6e8 39d4590 969a6e8 6673448 969a6e8 bf254d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language:
- cs
- sv
tags:
- translation Cszech Swedish model
datasets:
- dcep europarl jrc-acquis
widget:
- text: "Odborná příprava je v sektoru minimální a tradiční, postrádá specifické kurzy nebo výukové plány."
---
# legal_t5_small_trans_cs_sv model
Model on translating legal text from Cszech to Swedish. It was first released in
[this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep.
## Model description
legal_t5_small_trans_cs_sv is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters.
## Intended uses & limitations
The model could be used for translation of legal texts from Cszech to Swedish.
### How to use
Here is how to use this model to translate legal text from Cszech to Swedish in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
pipeline = TranslationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_sv"),
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_sv", do_lower_case=False,
skip_special_tokens=True),
device=0
)
cs_text = "Odborná příprava je v sektoru minimální a tradiční, postrádá specifické kurzy nebo výukové plány."
pipeline([cs_text], max_length=512)
```
## Training data
The legal_t5_small_trans_cs_sv model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts.
## Training procedure
The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
### Preprocessing
An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
### Pretraining
## Evaluation results
When the model is used for translation test dataset, achieves the following results:
Test results :
| Model | BLEU score |
|:-----:|:-----:|
| legal_t5_small_trans_cs_sv | 47.9|
### BibTeX entry and citation info
> Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
|