SGEcon commited on
Commit
0b2bbec
β€’
1 Parent(s): b3823a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -170
README.md CHANGED
@@ -1,201 +1,137 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
10
 
11
-
12
- ## Model Details
13
-
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
 
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
- #### Training Hyperparameters
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
201
 
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ datasets:
5
+ - kyujinpy/KOR-OpenOrca-Platypus-v3
6
+ language:
7
+ - ko
8
+ - en
9
+ tags:
10
+ - Economic
11
+ - Finance
12
+ base_model: davidkim205/komt-mistral-7b-v1
13
  ---
14
 
 
15
 
16
+ # Model Details
17
+ Model Developers: Sogang University SGEconFinlab(<<https://sc.sogang.ac.kr/aifinlab/>)
18
 
19
 
 
 
 
20
  ### Model Description
21
 
22
+ This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
23
+ The data sources are listed below, and we are not releasing the data that we trained on because it was used for research/policy purposes.
24
+ If you wish to use the original data, please contact the original author directly for permission to use it.
25
+
26
+ - **Developed by:** Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/>)
27
+ - **License:** cc-by-nc-4.0
28
+ - **Base Model:** davidkim205/komt-mistral-7b-v1(<https://huggingface.co/davidkim205/komt-mistral-7b-v1>)
29
+
30
+
31
+ ## Loading the Model
32
+
33
+ peft_model_id = "SGEcon/komt-mistral-7b-v1_fin_v5"
34
+ config = PeftConfig.from_pretrained(peft_model_id)
35
+ bnb_config = BitsAndBytesConfig(
36
+ load_in_4bit=True,
37
+ bnb_4bit_use_double_quant=True,
38
+ bnb_4bit_quant_type="nf4",
39
+ bnb_4bit_compute_dtype=torch.bfloat16
40
+ )
41
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
42
+ model = PeftModel.from_pretrained(model, peft_model_id)
43
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
44
+ model.eval()
45
+ streamer = TextStreamer(tokenizer)
46
+
47
+ ## Conducting Conversation
48
+
49
+ def gen(x):
50
+ generation_config = GenerationConfig(
51
+ temperature=0.8,
52
+ top_p=0.8,
53
+ top_k=100,
54
+ max_new_tokens=1024,
55
+ early_stopping=True,
56
+ do_sample=True,
57
+ )
58
+ q = f"[INST]{x} [/INST]"
59
+ gened = model.generate(
60
+ **tokenizer(
61
+ q,
62
+ return_tensors='pt',
63
+ return_token_type_ids=False
64
+ ).to('cuda'),
65
+ generation_config=generation_config,
66
+ pad_token_id=tokenizer.eos_token_id,
67
+ eos_token_id=tokenizer.eos_token_id,
68
+ streamer=streamer,
69
+ )
70
+ result_str = tokenizer.decode(gened[0])
71
+
72
+ # μž…λ ₯ 질문과 "[INST]" 및 "[/INST]" νƒœκ·Έ 제거
73
+ input_question_with_tags = f"[INST]{x} [/INST]"
74
+ result_str = result_str.replace(input_question_with_tags, "").strip()
75
+
76
+ # "<s>" 및 "</s>" νƒœκ·Έ 제거
77
+ result_str = result_str.replace("<s>", "").replace("</s>", "").strip()
78
+
79
+ return result_str
80
+
81
+
82
+
83
+
84
  ## Training Details
85
 
86
+ We use QLora to train the base model.
87
+ Quantized Low Rank Adapters (QLoRA) is an efficient technique that uses 4-bit quantized pre-trained language models to fine-tune 65 billion parameter models on a 48 GB GPU while significantly reducing memory usage.
88
+ The method uses NormalFloat 4-bit (NF4), a new data type that is theoretically optimal for normally distributed weights; Double Quantization, which further quantizes quantization constants to reduce average memory usage; and Paged Optimizers, which manage memory spikes during mini-batch processing, to increase memory efficiency without sacrificing performance.
 
 
 
 
 
 
 
 
 
 
 
89
 
90
+ Also, we performed instruction tuning using the data that we collected and the kyujinpy/KOR-OpenOrca-Platypus-v3 dataset on the hugging face.
91
+ Instruction tuning is learning in a supervised learning format that uses instructions and input data together as input and output data as a pair.
92
 
 
93
 
 
94
 
95
+
96
+ ### Training Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ 1. ν•œκ΅­μ€ν–‰: κ²½μ œκΈˆμœ΅μš©μ–΄ 700μ„ (<https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765>)
99
+ 2. κΈˆμœ΅κ°λ…μ›: κΈˆμœ΅μ†ŒλΉ„μž 정보 포털 파인 κΈˆμœ΅μš©μ–΄μ‚¬μ „(<https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021>)
100
+ 3. KDI κ²½μ œμ •λ³΄μ„Όν„°: μ‹œμ‚¬ μš©μ–΄μ‚¬μ „(<https://eiec.kdi.re.kr/material/wordDic.do>)
101
+ 4. ν•œκ΅­κ²½μ œμ‹ λ¬Έ/ν•œκ²½λ‹·μ»΄: ν•œκ²½κ²½μ œμš©μ–΄μ‚¬μ „(<https://terms.naver.com/list.naver?cid=42107&categoryId=42107>), 였늘의 TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1>), 였늘의 μ£Όλ‹ˆμ–΄ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5>), μƒκΈ€μƒκΈ€ν•œκ²½(<https://sgsg.hankyung.com/tesat/study>)
102
+ 5. μ€‘μ†Œλ²€μ²˜κΈ°μ—…λΆ€/λŒ€ν•œλ―Όκ΅­μ •λΆ€: μ€‘μ†Œλ²€μ²˜κΈ°μ—…λΆ€ μ „λ¬Έμš©μ–΄(<https://terms.naver.com/list.naver?cid=42103&categoryId=42103>)
103
+ 6. κ³ μ„±μ‚Ό/λ²•λ¬ΈμΆœνŒμ‚¬: νšŒκ³„Β·μ„Έλ¬΄ μš©μ–΄μ‚¬μ „(<https://terms.naver.com/list.naver?cid=51737&categoryId=51737>)
104
+ 7. 맨큐의 κ²½μ œν•™ 8판 Word Index
105
+ 8. kyujinpy/KOR-OpenOrca-Platypus-v3(<https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3>)
106
 
 
107
 
108
+ At the request of the original author, it is not to be used for commercial purposes. Therefore, it is licensed under the license CC-BY-NC-4.0.
109
+ The copyright of the data used belongs to the original author, so please contact the original author when using it.
110
 
 
111
 
 
112
 
 
113
 
114
+ ### Training Hyperparameters
115
 
116
+ |Hyperparameter|SGEcon/komt-mistral-7b-v1_fin_v5|
117
+ |------|---|
118
+ |Lora Method|Lora|
119
+ |load in 4 bit|True|
120
+ |learning rate|3e-5|
121
+ |lora alpa|8|
122
+ |lora rank|32|
123
+ |lora dropout|0.05|
124
+ |optim|adamw_torch|
125
+ |target_modules|o_proj, q_proj, up_proj, down_proj, gate_proj, k_proj, v_proj|
126
 
127
+
128
 
129
+ ### Example
130
 
131
+ > μ€‘μ•™μ€ν–‰μ˜ 역할에 λŒ€ν•΄μ„œ μ„€λͺ…ν•΄μ€„λž˜?
132
 
133
+ >> 쀑앙은행은 ν†΅ν™”λ°œν–‰κΆŒκ³Ό κΈˆμœ΅ν†΅μ œκΆŒμ„ 가진 기관이닀. 쀑앙은행은 κ΅­κ°€μ˜ 톡화정책, μ™Έν™˜μ •μ±…, κΈˆμœ΅μ •μ±…μ„ μˆ˜λ¦½ν•˜λŠ” λ™μ‹œμ— 상업은행과 같은 κΈˆμœ΅κΈ°κ΄€μ„ κ°λ…Β·κ°λ…ν•˜λŠ” 업무λ₯Ό μˆ˜ν–‰ν•œλ‹€. 쀑앙은행은 정뢀와 상업은행에 λŒ€ν•œ μžκΈˆλŒ€λΆ€κΈ°κ΄€μ΄λ‹€. 상업은행은 쀑앙은행에 μžκΈˆμ„ λΉŒλ¦¬κ±°λ‚˜ μ˜ˆκΈˆν•œλ‹€. 쀑앙은행은 ν†΅ν™”μ‹ μš©μ •μ±…μ„ μˆ˜ν–‰ν•˜κΈ° μœ„ν•΄ κΈˆμœ΅κΈ°κ΄€μ„ 톡해 μžκΈˆμ„ λŒ€μΆœν•˜κ±°λ‚˜ 예금 λ°›λŠ”λ‹€. 쀑앙은행은 상업은행에 λŒ€ν•œ μžκΈˆλŒ€λΆ€κΈ°κ΄€μ˜ μ—­ν• κ³Ό ν•¨κ»˜ μ‹œμ€‘μ€ν–‰μ— λŒ€ν•œ κ°λ…Β·κ°λ…μ˜ 역할을 μˆ˜ν–‰ν•œλ‹€. 상업은행이 μžκΈˆμ„ λŒ€μΆœν•  λ•ŒλŠ” 1차적으둜 상업은행에 λŒ€μΆœκΈˆμ„ μ§€κΈ‰ν•˜λŠ” λŒ€μ‹ , λŒ€μΆœμ€ν–‰μ— λŒ€μΆœκΈˆμ˜ 일뢀 λ˜λŠ” 전앑을 예금으둜 λ°›μ•„ 쀑앙은행에 λˆμ„ 빌렀주고 μ˜ˆκΈˆν•œλ‹€. μ˜ˆκΈˆμ— λŒ€ν•œ μ΄μžμœ¨μ„ λ†’μ—¬ μ˜ˆκΈˆμžκ°€ 쀑앙은행에 μ˜ˆκΈˆμ„ ν•˜κ²Œλ” μœ λ„ν•˜λŠ” 것이닀. ν•œνŽΈ 상업은행은 λŒ€μΆœμ„ ν•  λ•Œ λŒ€μΆœμ€ν–‰μ΄ λŒ€μΆœκΈˆμ„ μ˜ˆκΈˆν•˜λŠ” λŒ€μ‹ , λŒ€μΆœμ„ λ°›λŠ” 은행에 λŒ€μΆœκΈˆμ„ μ§€κΈ‰ν•œλ‹€.
134
 
 
135
 
 
136
 
137