Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,137 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
## Training Details
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
-
|
|
|
94 |
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
|
|
|
178 |
|
179 |
-
**APA:**
|
180 |
|
181 |
-
[More Information Needed]
|
182 |
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[More Information Needed]
|
200 |
|
201 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
datasets:
|
5 |
+
- kyujinpy/KOR-OpenOrca-Platypus-v3
|
6 |
+
language:
|
7 |
+
- ko
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- Economic
|
11 |
+
- Finance
|
12 |
+
base_model: davidkim205/komt-mistral-7b-v1
|
13 |
---
|
14 |
|
|
|
15 |
|
16 |
+
# Model Details
|
17 |
+
Model Developers: Sogang University SGEconFinlab(<<https://sc.sogang.ac.kr/aifinlab/>)
|
18 |
|
19 |
|
|
|
|
|
|
|
20 |
### Model Description
|
21 |
|
22 |
+
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
|
23 |
+
The data sources are listed below, and we are not releasing the data that we trained on because it was used for research/policy purposes.
|
24 |
+
If you wish to use the original data, please contact the original author directly for permission to use it.
|
25 |
+
|
26 |
+
- **Developed by:** Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/>)
|
27 |
+
- **License:** cc-by-nc-4.0
|
28 |
+
- **Base Model:** davidkim205/komt-mistral-7b-v1(<https://huggingface.co/davidkim205/komt-mistral-7b-v1>)
|
29 |
+
|
30 |
+
|
31 |
+
## Loading the Model
|
32 |
+
|
33 |
+
peft_model_id = "SGEcon/komt-mistral-7b-v1_fin_v5"
|
34 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
35 |
+
bnb_config = BitsAndBytesConfig(
|
36 |
+
load_in_4bit=True,
|
37 |
+
bnb_4bit_use_double_quant=True,
|
38 |
+
bnb_4bit_quant_type="nf4",
|
39 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
40 |
+
)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
|
42 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
44 |
+
model.eval()
|
45 |
+
streamer = TextStreamer(tokenizer)
|
46 |
+
|
47 |
+
## Conducting Conversation
|
48 |
+
|
49 |
+
def gen(x):
|
50 |
+
generation_config = GenerationConfig(
|
51 |
+
temperature=0.8,
|
52 |
+
top_p=0.8,
|
53 |
+
top_k=100,
|
54 |
+
max_new_tokens=1024,
|
55 |
+
early_stopping=True,
|
56 |
+
do_sample=True,
|
57 |
+
)
|
58 |
+
q = f"[INST]{x} [/INST]"
|
59 |
+
gened = model.generate(
|
60 |
+
**tokenizer(
|
61 |
+
q,
|
62 |
+
return_tensors='pt',
|
63 |
+
return_token_type_ids=False
|
64 |
+
).to('cuda'),
|
65 |
+
generation_config=generation_config,
|
66 |
+
pad_token_id=tokenizer.eos_token_id,
|
67 |
+
eos_token_id=tokenizer.eos_token_id,
|
68 |
+
streamer=streamer,
|
69 |
+
)
|
70 |
+
result_str = tokenizer.decode(gened[0])
|
71 |
+
|
72 |
+
# μ
λ ₯ μ§λ¬Έκ³Ό "[INST]" λ° "[/INST]" νκ·Έ μ κ±°
|
73 |
+
input_question_with_tags = f"[INST]{x} [/INST]"
|
74 |
+
result_str = result_str.replace(input_question_with_tags, "").strip()
|
75 |
+
|
76 |
+
# "<s>" λ° "</s>" νκ·Έ μ κ±°
|
77 |
+
result_str = result_str.replace("<s>", "").replace("</s>", "").strip()
|
78 |
+
|
79 |
+
return result_str
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
## Training Details
|
85 |
|
86 |
+
We use QLora to train the base model.
|
87 |
+
Quantized Low Rank Adapters (QLoRA) is an efficient technique that uses 4-bit quantized pre-trained language models to fine-tune 65 billion parameter models on a 48 GB GPU while significantly reducing memory usage.
|
88 |
+
The method uses NormalFloat 4-bit (NF4), a new data type that is theoretically optimal for normally distributed weights; Double Quantization, which further quantizes quantization constants to reduce average memory usage; and Paged Optimizers, which manage memory spikes during mini-batch processing, to increase memory efficiency without sacrificing performance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
Also, we performed instruction tuning using the data that we collected and the kyujinpy/KOR-OpenOrca-Platypus-v3 dataset on the hugging face.
|
91 |
+
Instruction tuning is learning in a supervised learning format that uses instructions and input data together as input and output data as a pair.
|
92 |
|
|
|
93 |
|
|
|
94 |
|
95 |
+
|
96 |
+
### Training Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
1. νκ΅μν: κ²½μ κΈμ΅μ©μ΄ 700μ (<https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765>)
|
99 |
+
2. κΈμ΅κ°λ
μ: κΈμ΅μλΉμ μ 보 ν¬νΈ νμΈ κΈμ΅μ©μ΄μ¬μ (<https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021>)
|
100 |
+
3. KDI κ²½μ μ 보μΌν°: μμ¬ μ©μ΄μ¬μ (<https://eiec.kdi.re.kr/material/wordDic.do>)
|
101 |
+
4. νκ΅κ²½μ μ λ¬Έ/νκ²½λ·μ»΄: νκ²½κ²½μ μ©μ΄μ¬μ (<https://terms.naver.com/list.naver?cid=42107&categoryId=42107>), μ€λμ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1>), μ€λμ μ£Όλμ΄ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5>), μκΈμκΈνκ²½(<https://sgsg.hankyung.com/tesat/study>)
|
102 |
+
5. μ€μλ²€μ²κΈ°μ
λΆ/λνλ―Όκ΅μ λΆ: μ€μλ²€μ²κΈ°μ
λΆ μ λ¬Έμ©μ΄(<https://terms.naver.com/list.naver?cid=42103&categoryId=42103>)
|
103 |
+
6. κ³ μ±μΌ/λ²λ¬ΈμΆνμ¬: νκ³Β·μΈλ¬΄ μ©μ΄μ¬μ (<https://terms.naver.com/list.naver?cid=51737&categoryId=51737>)
|
104 |
+
7. 맨νμ κ²½μ ν 8ν Word Index
|
105 |
+
8. kyujinpy/KOR-OpenOrca-Platypus-v3(<https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3>)
|
106 |
|
|
|
107 |
|
108 |
+
At the request of the original author, it is not to be used for commercial purposes. Therefore, it is licensed under the license CC-BY-NC-4.0.
|
109 |
+
The copyright of the data used belongs to the original author, so please contact the original author when using it.
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|
114 |
+
### Training Hyperparameters
|
115 |
|
116 |
+
|Hyperparameter|SGEcon/komt-mistral-7b-v1_fin_v5|
|
117 |
+
|------|---|
|
118 |
+
|Lora Method|Lora|
|
119 |
+
|load in 4 bit|True|
|
120 |
+
|learning rate|3e-5|
|
121 |
+
|lora alpa|8|
|
122 |
+
|lora rank|32|
|
123 |
+
|lora dropout|0.05|
|
124 |
+
|optim|adamw_torch|
|
125 |
+
|target_modules|o_proj, q_proj, up_proj, down_proj, gate_proj, k_proj, v_proj|
|
126 |
|
127 |
+
|
128 |
|
129 |
+
### Example
|
130 |
|
131 |
+
> μ€μμνμ μν μ λν΄μ μ€λͺ
ν΄μ€λ?
|
132 |
|
133 |
+
>> μ€μμνμ ν΅νλ°νκΆκ³Ό κΈμ΅ν΅μ κΆμ κ°μ§ κΈ°κ΄μ΄λ€. μ€μμνμ κ΅κ°μ ν΅νμ μ±
, μΈνμ μ±
, κΈμ΅μ μ±
μ μ립νλ λμμ μμ
μνκ³Ό κ°μ κΈμ΅κΈ°κ΄μ κ°λ
Β·κ°λ
νλ μ
무λ₯Ό μννλ€. μ€μμνμ μ λΆμ μμ
μνμ λν μκΈλλΆκΈ°κ΄μ΄λ€. μμ
μνμ μ€μμνμ μκΈμ λΉλ¦¬κ±°λ μκΈνλ€. μ€μμνμ ν΅νμ μ©μ μ±
μ μννκΈ° μν΄ κΈμ΅κΈ°κ΄μ ν΅ν΄ μκΈμ λμΆνκ±°λ μκΈ λ°λλ€. μ€μμνμ μμ
μνμ λν μκΈλλΆκΈ°κ΄μ μν κ³Ό ν¨κ» μμ€μνμ λν κ°λ
Β·κ°λ
μ μν μ μννλ€. μμ
μνμ΄ μκΈμ λμΆν λλ 1μ°¨μ μΌλ‘ μμ
μνμ λμΆκΈμ μ§κΈνλ λμ , λμΆμνμ λμΆκΈμ μΌλΆ λλ μ μ‘μ μκΈμΌλ‘ λ°μ μ€μμνμ λμ λΉλ €μ£Όκ³ μκΈνλ€. μκΈμ λν μ΄μμ¨μ λμ¬ μκΈμκ° μ€μμνμ μκΈμ νκ²λ μ λνλ κ²μ΄λ€. ννΈ μμ
μνμ λμΆμ ν λ λμΆμνμ΄ λμΆκΈμ μκΈνλ λμ , λμΆμ λ°λ μνμ λμΆκΈμ μ§κΈνλ€.
|
134 |
|
|
|
135 |
|
|
|
136 |
|
137 |
|