SGme commited on
Commit
4053175
·
1 Parent(s): 1e208d4
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 227.93 +/- 64.60
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4fadb81cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4fadb81d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4fadb81dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4fadb81e60>", "_build": "<function ActorCriticPolicy._build at 0x7f4fadb81ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4fadb81f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4fadb09050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4fadb090e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4fadb09170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4fadb09200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4fadb09290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4fadb59360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651912895.2579665, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq4lD3GLJ8/6MTiPqYJH78cQHI9D+oiPgAAAAAAAAAAE0szPkFHkryIG2K6e6arOJSKCL6+B5g5AACAPwAAgD9mz3U+YRHbvIO6h7rm37s4FTFCvoMjojkAAIA/AACAP0BRWT608xI+oumFviLVcr4Agga+Gn+hvQAAAAAAAAAAgKMsvgMsabzlZZw6PdwaOfqZ1z31Tey5AACAPwAAgD9mRBo+8WJdPwTEiz6rOCe/SEkFPvveMD0AAAAAAAAAACDGYj4b5768OCXhugbVRDkMWCi+G+oNOgAAgD8AAIA/rTFxvrZDJLwmEQ27atDguFTkoj0FiSs6AACAPwAAgD/m9Eu9QWS5P6tL8b4vDkA94k69vDIRE74AAAAAAAAAAG0dbT57Rek9cE2TvNvTO765/ZM8BnoCvAAAAAAAAAAAOvV1vkMG5j6WKYw8wSvivnGeFL65ZiA+AAAAAAAAAABA6Mg9tqIGP/ZFnzyXL8q+JbqFPFF7gzkAAAAAAAAAANrB6r32aDq4Nl2DutB7p7cmndS50x7QOQAAgD8AAAAAxmBVvtE1ij0GAyE+HYiBvjWyIz1t/Og9AAAAAAAAAABA/Uc+iAybvGX32ToymSS53Q0LvgYHC7oAAIA/AACAPyNic75J5tE+TRHPPfBn1L5wTy29fp3BPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KS+LG1dYUCUhpRSlIwBbJRN6AOMAXSUR0CtN8Z/0/W2dX2UKGgGaAloD0MI9FKxMS9ObkCUhpRSlGgVS/BoFkdArTjas6q82HV9lChoBmgJaA9DCImbU8kAN3JAlIaUUpRoFUu4aBZHQK05KnDR+jN1fZQoaAZoCWgPQwgbLnJPl1RwQJSGlFKUaBVLvGgWR0CtOng4XGfgdX2UKGgGaAloD0MIIef9f5xgPECUhpRSlGgVS6NoFkdArTu1rhzeXXV9lChoBmgJaA9DCJW4jnHF3W1AlIaUUpRoFUvTaBZHQK076k0Jng51fZQoaAZoCWgPQwh8KxIT1NZjQJSGlFKUaBVN6ANoFkdArT0BHmRvFXV9lChoBmgJaA9DCBgkfVpFBmxAlIaUUpRoFUv3aBZHQK09EltTDO11fZQoaAZoCWgPQwjItaFinKhtQJSGlFKUaBVL1mgWR0CtPR1s+FDfdX2UKGgGaAloD0MILNfbZqqub0CUhpRSlGgVS7xoFkdArT2cBMi8nXV9lChoBmgJaA9DCFxUi4jieXFAlIaUUpRoFU18AWgWR0CtPhaBy0a7dX2UKGgGaAloD0MI2NMOf01cQkCUhpRSlGgVS5poFkdArT542OyVwHV9lChoBmgJaA9DCFu1a0Ja8GZAlIaUUpRoFU3oA2gWR0CtP9KAjIJadX2UKGgGaAloD0MINxyWBn5DYUCUhpRSlGgVTegDaBZHQK1AI7e2uxN1fZQoaAZoCWgPQwgcQSrFjv9wQJSGlFKUaBVLwGgWR0CtQM2xptaZdX2UKGgGaAloD0MI6KIh41HuQ0CUhpRSlGgVS75oFkdArUGy+BYms3V9lChoBmgJaA9DCD8e+u7WAm5AlIaUUpRoFUvIaBZHQK1B4vUz9CN1fZQoaAZoCWgPQwhUH0jeudRwQJSGlFKUaBVLx2gWR0CtQfXazu4PdX2UKGgGaAloD0MI1xaelwo9b0CUhpRSlGgVS7xoFkdArUKjurp7kXV9lChoBmgJaA9DCCFX6lmQSm9AlIaUUpRoFUvXaBZHQK1C0t1ZDAt1fZQoaAZoCWgPQwg7+8qDdLdwQJSGlFKUaBVNwwFoFkdArUREoUi6hHV9lChoBmgJaA9DCGYyHM8nKHNAlIaUUpRoFUv+aBZHQK1EkbzbvgF1fZQoaAZoCWgPQwgUIuAQqnpkQJSGlFKUaBVN6ANoFkdArUUtkDp1R3V9lChoBmgJaA9DCJOKxtpfNm9AlIaUUpRoFUu9aBZHQK1FRqwhW5p1fZQoaAZoCWgPQwgC85ApH1RuQJSGlFKUaBVNUQJoFkdArUVyYPXkHXV9lChoBmgJaA9DCLvUCP0MjHFAlIaUUpRoFUvGaBZHQK1GV/2Cdz51fZQoaAZoCWgPQwif6SXGsvNqQJSGlFKUaBVNCwFoFkdArUZde4TbnHV9lChoBmgJaA9DCGFUUifgv3BAlIaUUpRoFUvFaBZHQK1Gl41P3zt1fZQoaAZoCWgPQwit3XahufZtQJSGlFKUaBVL0WgWR0CtRsh5X2dvdX2UKGgGaAloD0MIc3/1uG/nb0CUhpRSlGgVS75oFkdArUcJ0r9VFXV9lChoBmgJaA9DCA8J3/ubRGJAlIaUUpRoFU3oA2gWR0CtSKi7TUiIdX2UKGgGaAloD0MIMZV+wlnabkCUhpRSlGgVTQEBaBZHQK1IxZi/fwZ1fZQoaAZoCWgPQwi53jZTIUJwQJSGlFKUaBVNkAFoFkdArUkbaufVZ3V9lChoBmgJaA9DCLsru2DwL21AlIaUUpRoFUvdaBZHQK1JTPGhmGx1fZQoaAZoCWgPQwhSgCiYMTU/QJSGlFKUaBVLxmgWR0CtSbH8jzI4dX2UKGgGaAloD0MIsK91qdE4cECUhpRSlGgVS8xoFkdArUm8Q9RrJ3V9lChoBmgJaA9DCG/2B8qtanBAlIaUUpRoFUvxaBZHQK1J9w3HaOB1fZQoaAZoCWgPQwgbuAN1SgBxQJSGlFKUaBVLu2gWR0CtSnMOPNmldX2UKGgGaAloD0MI1EZ1OlAFcECUhpRSlGgVS75oFkdArUqtW4mTknV9lChoBmgJaA9DCCrltRK6wnBAlIaUUpRoFUv/aBZHQK1K9xJd0JZ1fZQoaAZoCWgPQwgUQZyHUyRwQJSGlFKUaBVLymgWR0CtS0rxI8QqdX2UKGgGaAloD0MIBHKJIw/SQUCUhpRSlGgVS6doFkdArUvxQBPsRnV9lChoBmgJaA9DCKJD4EggAmJAlIaUUpRoFU3oA2gWR0CtTDEKmbb2dX2UKGgGaAloD0MIbvse9Zc+cUCUhpRSlGgVS7doFkdArUxWOIZZS3V9lChoBmgJaA9DCH4BvXDnhGNAlIaUUpRoFU3oA2gWR0CtTRvNFBppdX2UKGgGaAloD0MIiWLyBlh2cECUhpRSlGgVS8JoFkdArU11VHWjGnV9lChoBmgJaA9DCLiwbry7gnBAlIaUUpRoFUvWaBZHQK1N0WqtHQR1fZQoaAZoCWgPQwhfmiLAKX9wQJSGlFKUaBVLtmgWR0CtTfNqpLmIdX2UKGgGaAloD0MI7zzxnK0NbECUhpRSlGgVS+xoFkdArU9oN3GGVXV9lChoBmgJaA9DCMPUljqIh3BAlIaUUpRoFUvVaBZHQK1Qh9pAUtZ1fZQoaAZoCWgPQwibyMwFrr1wQJSGlFKUaBVLy2gWR0CtUNK0lZ5idX2UKGgGaAloD0MIXiuhu2Q3cECUhpRSlGgVS9toFkdArVEFZ3cHnnV9lChoBmgJaA9DCBpTsMbZQnBAlIaUUpRoFUu1aBZHQK1RPwNsnAt1fZQoaAZoCWgPQwjJA5FFGoBqQJSGlFKUaBVNLgFoFkdArVFxmNBF/nV9lChoBmgJaA9DCMJM27+yPm1AlIaUUpRoFUu/aBZHQK1SiPJaJRB1fZQoaAZoCWgPQwjWj03yox1jQJSGlFKUaBVN6ANoFkdArVKWE7GNrHV9lChoBmgJaA9DCKGGb2HdJEJAlIaUUpRoFUvQaBZHQK1S0vTw2EV1fZQoaAZoCWgPQwhANPPkGoRwQJSGlFKUaBVLtWgWR0CtU++gte2NdX2UKGgGaAloD0MIFVRU/Uqha0CUhpRSlGgVTRMBaBZHQK1UDm4iHIp1fZQoaAZoCWgPQwgvbw7XasM+QJSGlFKUaBVLo2gWR0CtVOB/7SApdX2UKGgGaAloD0MIpnud1Bdub0CUhpRSlGgVS8JoFkdArVVaFVT723V9lChoBmgJaA9DCPsCeuHOaW1AlIaUUpRoFUu/aBZHQK1VvVOsT391fZQoaAZoCWgPQwg9mBQfHzBwQJSGlFKUaBVL02gWR0CtVnjRlYlqdX2UKGgGaAloD0MI2uIan0ktcECUhpRSlGgVS9BoFkdArVaXseGO/HV9lChoBmgJaA9DCLtIoSx8W3BAlIaUUpRoFUuzaBZHQK1XPZV4oql1fZQoaAZoCWgPQwiLa3wme3xyQJSGlFKUaBVLxWgWR0CtV20EPlMidX2UKGgGaAloD0MIK6ORz2u7cUCUhpRSlGgVS61oFkdArVg9DYywfXV9lChoBmgJaA9DCOs6VFOSom9AlIaUUpRoFU0VAWgWR0CtWZsVUModdX2UKGgGaAloD0MIUrgehWsZcECUhpRSlGgVS9doFkdArVptzbN8mnV9lChoBmgJaA9DCBx5ILKIMXFAlIaUUpRoFUvDaBZHQK1ablp48lp1fZQoaAZoCWgPQwgTKGIRQ79wQJSGlFKUaBVL4WgWR0CtW72wV0tAdX2UKGgGaAloD0MIZ+4h4XujbkCUhpRSlGgVS8BoFkdArVvFxEORT3V9lChoBmgJaA9DCFciUP2DuW9AlIaUUpRoFUvGaBZHQK1bzihnJ1d1fZQoaAZoCWgPQwjqJFtdzjRwQJSGlFKUaBVLzWgWR0CtXNo1+AmRdX2UKGgGaAloD0MI0LhwIKRQcECUhpRSlGgVS7FoFkdArV0rr1M/QnV9lChoBmgJaA9DCMkE/BqJSXFAlIaUUpRoFUvcaBZHQK1deoMrmQt1fZQoaAZoCWgPQwiCV8udGXZhQJSGlFKUaBVN6ANoFkdArV4W5H3DenV9lChoBmgJaA9DCAovwakPKV5AlIaUUpRoFU3oA2gWR0CtXpaYE4ecdX2UKGgGaAloD0MIxvgwe9lYb0CUhpRSlGgVS81oFkdArWAjGcWj5HV9lChoBmgJaA9DCE9bI4Jx3G1AlIaUUpRoFUv5aBZHQK1giLxZuAJ1fZQoaAZoCWgPQwg9RnnmJUBxQJSGlFKUaBVLv2gWR0CtYRqxcE/0dX2UKGgGaAloD0MI1ub/VUd3YECUhpRSlGgVTegDaBZHQK1heUcn3L51fZQoaAZoCWgPQwjuBzwwADtkQJSGlFKUaBVN6ANoFkdArWG4Ka5PM3V9lChoBmgJaA9DCDtypDMwiW5AlIaUUpRoFUvXaBZHQK1htu63AmB1fZQoaAZoCWgPQwiaC1weawNyQJSGlFKUaBVLymgWR0CtYlxbr1M/dX2UKGgGaAloD0MIfCdmvZhFZECUhpRSlGgVTegDaBZHQK1ifIOH3111fZQoaAZoCWgPQwg6kWCqmQNwQJSGlFKUaBVLuWgWR0CtYvQuM+/ydX2UKGgGaAloD0MIKerMPeSTcECUhpRSlGgVS+JoFkdArWNe5rgwXnV9lChoBmgJaA9DCJc5XRYTIm9AlIaUUpRoFUvuaBZHQK1jYrQPZqV1fZQoaAZoCWgPQwgwDcNHxOFhQJSGlFKUaBVN6ANoFkdArWPvt8eCCnV9lChoBmgJaA9DCMwHBDoT+XNAlIaUUpRoFU1CAWgWR0CtZA0vf0mMdX2UKGgGaAloD0MIQfLOoczicECUhpRSlGgVTQIBaBZHQK1kx5uZThp1fZQoaAZoCWgPQwj1oQvq22hxQJSGlFKUaBVLtGgWR0CtZUzpgTh6dX2UKGgGaAloD0MIxHqjVphfb0CUhpRSlGgVS89oFkdArWWW8Zk08HV9lChoBmgJaA9DCFAdq5ReMHBAlIaUUpRoFUv2aBZHQK1lrpaA4GV1fZQoaAZoCWgPQwg+A+rNqJE/QJSGlFKUaBVLgGgWR0CtZeqiGnGbdX2UKGgGaAloD0MISUxQw7fYJkCUhpRSlGgVS3VoFkdArWY+ZE2HcnV9lChoBmgJaA9DCAd40sJl03BAlIaUUpRoFUveaBZHQK1m3giNbTt1fZQoaAZoCWgPQwjDDfj8cA1xQJSGlFKUaBVL3WgWR0CtZ3mff4yodX2UKGgGaAloD0MI8nhafuByLECUhpRSlGgVS6xoFkdArWeV6eGwinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
koko.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b46ab2c8a8145d205dd728e8d3d1d9a39ae0f4a20cce86741f515d77c4d5d3b
3
+ size 144017
koko/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
koko/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4fadb81cb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4fadb81d40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4fadb81dd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4fadb81e60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4fadb81ef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4fadb81f80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4fadb09050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4fadb090e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4fadb09170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4fadb09200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4fadb09290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4fadb59360>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651912895.2579665,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq4lD3GLJ8/6MTiPqYJH78cQHI9D+oiPgAAAAAAAAAAE0szPkFHkryIG2K6e6arOJSKCL6+B5g5AACAPwAAgD9mz3U+YRHbvIO6h7rm37s4FTFCvoMjojkAAIA/AACAP0BRWT608xI+oumFviLVcr4Agga+Gn+hvQAAAAAAAAAAgKMsvgMsabzlZZw6PdwaOfqZ1z31Tey5AACAPwAAgD9mRBo+8WJdPwTEiz6rOCe/SEkFPvveMD0AAAAAAAAAACDGYj4b5768OCXhugbVRDkMWCi+G+oNOgAAgD8AAIA/rTFxvrZDJLwmEQ27atDguFTkoj0FiSs6AACAPwAAgD/m9Eu9QWS5P6tL8b4vDkA94k69vDIRE74AAAAAAAAAAG0dbT57Rek9cE2TvNvTO765/ZM8BnoCvAAAAAAAAAAAOvV1vkMG5j6WKYw8wSvivnGeFL65ZiA+AAAAAAAAAABA6Mg9tqIGP/ZFnzyXL8q+JbqFPFF7gzkAAAAAAAAAANrB6r32aDq4Nl2DutB7p7cmndS50x7QOQAAgD8AAAAAxmBVvtE1ij0GAyE+HYiBvjWyIz1t/Og9AAAAAAAAAABA/Uc+iAybvGX32ToymSS53Q0LvgYHC7oAAIA/AACAPyNic75J5tE+TRHPPfBn1L5wTy29fp3BPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KS+LG1dYUCUhpRSlIwBbJRN6AOMAXSUR0CtN8Z/0/W2dX2UKGgGaAloD0MI9FKxMS9ObkCUhpRSlGgVS/BoFkdArTjas6q82HV9lChoBmgJaA9DCImbU8kAN3JAlIaUUpRoFUu4aBZHQK05KnDR+jN1fZQoaAZoCWgPQwgbLnJPl1RwQJSGlFKUaBVLvGgWR0CtOng4XGfgdX2UKGgGaAloD0MIIef9f5xgPECUhpRSlGgVS6NoFkdArTu1rhzeXXV9lChoBmgJaA9DCJW4jnHF3W1AlIaUUpRoFUvTaBZHQK076k0Jng51fZQoaAZoCWgPQwh8KxIT1NZjQJSGlFKUaBVN6ANoFkdArT0BHmRvFXV9lChoBmgJaA9DCBgkfVpFBmxAlIaUUpRoFUv3aBZHQK09EltTDO11fZQoaAZoCWgPQwjItaFinKhtQJSGlFKUaBVL1mgWR0CtPR1s+FDfdX2UKGgGaAloD0MILNfbZqqub0CUhpRSlGgVS7xoFkdArT2cBMi8nXV9lChoBmgJaA9DCFxUi4jieXFAlIaUUpRoFU18AWgWR0CtPhaBy0a7dX2UKGgGaAloD0MI2NMOf01cQkCUhpRSlGgVS5poFkdArT542OyVwHV9lChoBmgJaA9DCFu1a0Ja8GZAlIaUUpRoFU3oA2gWR0CtP9KAjIJadX2UKGgGaAloD0MINxyWBn5DYUCUhpRSlGgVTegDaBZHQK1AI7e2uxN1fZQoaAZoCWgPQwgcQSrFjv9wQJSGlFKUaBVLwGgWR0CtQM2xptaZdX2UKGgGaAloD0MI6KIh41HuQ0CUhpRSlGgVS75oFkdArUGy+BYms3V9lChoBmgJaA9DCD8e+u7WAm5AlIaUUpRoFUvIaBZHQK1B4vUz9CN1fZQoaAZoCWgPQwhUH0jeudRwQJSGlFKUaBVLx2gWR0CtQfXazu4PdX2UKGgGaAloD0MI1xaelwo9b0CUhpRSlGgVS7xoFkdArUKjurp7kXV9lChoBmgJaA9DCCFX6lmQSm9AlIaUUpRoFUvXaBZHQK1C0t1ZDAt1fZQoaAZoCWgPQwg7+8qDdLdwQJSGlFKUaBVNwwFoFkdArUREoUi6hHV9lChoBmgJaA9DCGYyHM8nKHNAlIaUUpRoFUv+aBZHQK1EkbzbvgF1fZQoaAZoCWgPQwgUIuAQqnpkQJSGlFKUaBVN6ANoFkdArUUtkDp1R3V9lChoBmgJaA9DCJOKxtpfNm9AlIaUUpRoFUu9aBZHQK1FRqwhW5p1fZQoaAZoCWgPQwgC85ApH1RuQJSGlFKUaBVNUQJoFkdArUVyYPXkHXV9lChoBmgJaA9DCLvUCP0MjHFAlIaUUpRoFUvGaBZHQK1GV/2Cdz51fZQoaAZoCWgPQwif6SXGsvNqQJSGlFKUaBVNCwFoFkdArUZde4TbnHV9lChoBmgJaA9DCGFUUifgv3BAlIaUUpRoFUvFaBZHQK1Gl41P3zt1fZQoaAZoCWgPQwit3XahufZtQJSGlFKUaBVL0WgWR0CtRsh5X2dvdX2UKGgGaAloD0MIc3/1uG/nb0CUhpRSlGgVS75oFkdArUcJ0r9VFXV9lChoBmgJaA9DCA8J3/ubRGJAlIaUUpRoFU3oA2gWR0CtSKi7TUiIdX2UKGgGaAloD0MIMZV+wlnabkCUhpRSlGgVTQEBaBZHQK1IxZi/fwZ1fZQoaAZoCWgPQwi53jZTIUJwQJSGlFKUaBVNkAFoFkdArUkbaufVZ3V9lChoBmgJaA9DCLsru2DwL21AlIaUUpRoFUvdaBZHQK1JTPGhmGx1fZQoaAZoCWgPQwhSgCiYMTU/QJSGlFKUaBVLxmgWR0CtSbH8jzI4dX2UKGgGaAloD0MIsK91qdE4cECUhpRSlGgVS8xoFkdArUm8Q9RrJ3V9lChoBmgJaA9DCG/2B8qtanBAlIaUUpRoFUvxaBZHQK1J9w3HaOB1fZQoaAZoCWgPQwgbuAN1SgBxQJSGlFKUaBVLu2gWR0CtSnMOPNmldX2UKGgGaAloD0MI1EZ1OlAFcECUhpRSlGgVS75oFkdArUqtW4mTknV9lChoBmgJaA9DCCrltRK6wnBAlIaUUpRoFUv/aBZHQK1K9xJd0JZ1fZQoaAZoCWgPQwgUQZyHUyRwQJSGlFKUaBVLymgWR0CtS0rxI8QqdX2UKGgGaAloD0MIBHKJIw/SQUCUhpRSlGgVS6doFkdArUvxQBPsRnV9lChoBmgJaA9DCKJD4EggAmJAlIaUUpRoFU3oA2gWR0CtTDEKmbb2dX2UKGgGaAloD0MIbvse9Zc+cUCUhpRSlGgVS7doFkdArUxWOIZZS3V9lChoBmgJaA9DCH4BvXDnhGNAlIaUUpRoFU3oA2gWR0CtTRvNFBppdX2UKGgGaAloD0MIiWLyBlh2cECUhpRSlGgVS8JoFkdArU11VHWjGnV9lChoBmgJaA9DCLiwbry7gnBAlIaUUpRoFUvWaBZHQK1N0WqtHQR1fZQoaAZoCWgPQwhfmiLAKX9wQJSGlFKUaBVLtmgWR0CtTfNqpLmIdX2UKGgGaAloD0MI7zzxnK0NbECUhpRSlGgVS+xoFkdArU9oN3GGVXV9lChoBmgJaA9DCMPUljqIh3BAlIaUUpRoFUvVaBZHQK1Qh9pAUtZ1fZQoaAZoCWgPQwibyMwFrr1wQJSGlFKUaBVLy2gWR0CtUNK0lZ5idX2UKGgGaAloD0MIXiuhu2Q3cECUhpRSlGgVS9toFkdArVEFZ3cHnnV9lChoBmgJaA9DCBpTsMbZQnBAlIaUUpRoFUu1aBZHQK1RPwNsnAt1fZQoaAZoCWgPQwjJA5FFGoBqQJSGlFKUaBVNLgFoFkdArVFxmNBF/nV9lChoBmgJaA9DCMJM27+yPm1AlIaUUpRoFUu/aBZHQK1SiPJaJRB1fZQoaAZoCWgPQwjWj03yox1jQJSGlFKUaBVN6ANoFkdArVKWE7GNrHV9lChoBmgJaA9DCKGGb2HdJEJAlIaUUpRoFUvQaBZHQK1S0vTw2EV1fZQoaAZoCWgPQwhANPPkGoRwQJSGlFKUaBVLtWgWR0CtU++gte2NdX2UKGgGaAloD0MIFVRU/Uqha0CUhpRSlGgVTRMBaBZHQK1UDm4iHIp1fZQoaAZoCWgPQwgvbw7XasM+QJSGlFKUaBVLo2gWR0CtVOB/7SApdX2UKGgGaAloD0MIpnud1Bdub0CUhpRSlGgVS8JoFkdArVVaFVT723V9lChoBmgJaA9DCPsCeuHOaW1AlIaUUpRoFUu/aBZHQK1VvVOsT391fZQoaAZoCWgPQwg9mBQfHzBwQJSGlFKUaBVL02gWR0CtVnjRlYlqdX2UKGgGaAloD0MI2uIan0ktcECUhpRSlGgVS9BoFkdArVaXseGO/HV9lChoBmgJaA9DCLtIoSx8W3BAlIaUUpRoFUuzaBZHQK1XPZV4oql1fZQoaAZoCWgPQwiLa3wme3xyQJSGlFKUaBVLxWgWR0CtV20EPlMidX2UKGgGaAloD0MIK6ORz2u7cUCUhpRSlGgVS61oFkdArVg9DYywfXV9lChoBmgJaA9DCOs6VFOSom9AlIaUUpRoFU0VAWgWR0CtWZsVUModdX2UKGgGaAloD0MIUrgehWsZcECUhpRSlGgVS9doFkdArVptzbN8mnV9lChoBmgJaA9DCBx5ILKIMXFAlIaUUpRoFUvDaBZHQK1ablp48lp1fZQoaAZoCWgPQwgTKGIRQ79wQJSGlFKUaBVL4WgWR0CtW72wV0tAdX2UKGgGaAloD0MIZ+4h4XujbkCUhpRSlGgVS8BoFkdArVvFxEORT3V9lChoBmgJaA9DCFciUP2DuW9AlIaUUpRoFUvGaBZHQK1bzihnJ1d1fZQoaAZoCWgPQwjqJFtdzjRwQJSGlFKUaBVLzWgWR0CtXNo1+AmRdX2UKGgGaAloD0MI0LhwIKRQcECUhpRSlGgVS7FoFkdArV0rr1M/QnV9lChoBmgJaA9DCMkE/BqJSXFAlIaUUpRoFUvcaBZHQK1deoMrmQt1fZQoaAZoCWgPQwiCV8udGXZhQJSGlFKUaBVN6ANoFkdArV4W5H3DenV9lChoBmgJaA9DCAovwakPKV5AlIaUUpRoFU3oA2gWR0CtXpaYE4ecdX2UKGgGaAloD0MIxvgwe9lYb0CUhpRSlGgVS81oFkdArWAjGcWj5HV9lChoBmgJaA9DCE9bI4Jx3G1AlIaUUpRoFUv5aBZHQK1giLxZuAJ1fZQoaAZoCWgPQwg9RnnmJUBxQJSGlFKUaBVLv2gWR0CtYRqxcE/0dX2UKGgGaAloD0MI1ub/VUd3YECUhpRSlGgVTegDaBZHQK1heUcn3L51fZQoaAZoCWgPQwjuBzwwADtkQJSGlFKUaBVN6ANoFkdArWG4Ka5PM3V9lChoBmgJaA9DCDtypDMwiW5AlIaUUpRoFUvXaBZHQK1htu63AmB1fZQoaAZoCWgPQwiaC1weawNyQJSGlFKUaBVLymgWR0CtYlxbr1M/dX2UKGgGaAloD0MIfCdmvZhFZECUhpRSlGgVTegDaBZHQK1ifIOH3111fZQoaAZoCWgPQwg6kWCqmQNwQJSGlFKUaBVLuWgWR0CtYvQuM+/ydX2UKGgGaAloD0MIKerMPeSTcECUhpRSlGgVS+JoFkdArWNe5rgwXnV9lChoBmgJaA9DCJc5XRYTIm9AlIaUUpRoFUvuaBZHQK1jYrQPZqV1fZQoaAZoCWgPQwgwDcNHxOFhQJSGlFKUaBVN6ANoFkdArWPvt8eCCnV9lChoBmgJaA9DCMwHBDoT+XNAlIaUUpRoFU1CAWgWR0CtZA0vf0mMdX2UKGgGaAloD0MIQfLOoczicECUhpRSlGgVTQIBaBZHQK1kx5uZThp1fZQoaAZoCWgPQwj1oQvq22hxQJSGlFKUaBVLtGgWR0CtZUzpgTh6dX2UKGgGaAloD0MIxHqjVphfb0CUhpRSlGgVS89oFkdArWWW8Zk08HV9lChoBmgJaA9DCFAdq5ReMHBAlIaUUpRoFUv2aBZHQK1lrpaA4GV1fZQoaAZoCWgPQwg+A+rNqJE/QJSGlFKUaBVLgGgWR0CtZeqiGnGbdX2UKGgGaAloD0MISUxQw7fYJkCUhpRSlGgVS3VoFkdArWY+ZE2HcnV9lChoBmgJaA9DCAd40sJl03BAlIaUUpRoFUveaBZHQK1m3giNbTt1fZQoaAZoCWgPQwjDDfj8cA1xQJSGlFKUaBVL3WgWR0CtZ3mff4yodX2UKGgGaAloD0MI8nhafuByLECUhpRSlGgVS6xoFkdArWeV6eGwinVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 470,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
koko/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66d795eb4d512a192793176de9756dfbcf9518afe2f85a0041e230115513544
3
+ size 84893
koko/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7df0e95990c9a330e40b10bde58c40455bcee0a360e66cb4b810a8d84d86f85a
3
+ size 43201
koko/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
koko/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50a92bb2152635e8962b16d579ec8b4085fd3bb39e79a98297e1119740c58cd8
3
+ size 195982
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 227.92735400407028, "std_reward": 64.59849875733966, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T09:38:40.024445"}