File size: 5,357 Bytes
44b0983
 
1c4d841
e0774eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44b0983
 
596dc70
44b0983
 
596dc70
 
 
 
 
 
44b0983
596dc70
 
 
 
 
 
 
 
 
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
 
 
 
 
 
 
 
 
 
 
 
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
 
44b0983
596dc70
 
44b0983
596dc70
 
44b0983
596dc70
 
 
 
44b0983
596dc70
44b0983
596dc70
 
 
44b0983
596dc70
44b0983
596dc70
 
 
 
 
 
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
 
 
 
 
 
44b0983
596dc70
44b0983
596dc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
44b0983
596dc70
44b0983
e0774eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
library_name: transformers
license: apache-2.0
datasets:
- SIRIS-Lab/citation-parser-ENTITY
language:
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
tags:
- citation
- science
- ner
base_model:
- distilbert/distilbert-base-multilingual-cased
---

# Citation Parsing (NER)

<!-- Provide a quick summary of what the model is/does. -->
The **Citation Parsing (NER)** model utilizes advanced Named Entity Recognition (NER) to extract key fields from citation texts. This model parses citations into structured data fields such as TITLE, AUTHORS, VOLUME, ISSUE, YEAR, DOI, ISSN, ISBN, FIRST_PAGE, LAST_PAGE, JOURNAL, and EDITOR.

## Overview

<details>
<summary>Click to expand</summary>

- **Model type:** Language Model
- **Architecture:** DistilBERT
- **Language:** Multilingual
- **License:** Apache 2.0
- **Task:** Named Entity Recognition (NER) for Citation Parsing
- **Dataset:** Custom Citation Parsing Dataset
- **Additional Resources:**
  - [GitHub](https://github.com/sirisacademic/citation-parser)
</details>

## Model description

The **Citation Parsing (NER)** model is part of the [`Citation Parser`](https://github.com/sirisacademic/citation-parser) package. It is fine-tuned for extracting structured information from citation texts into the following key fields:

- `TITLE`
- `AUTHORS`
- `VOLUME`
- `ISSUE`
- `YEAR`
- `DOI`
- `ISSN`
- `ISBN`
- `FIRST_PAGE`
- `LAST_PAGE`
- `JOURNAL`
- `EDITOR`

This model was trained using the **DistilBERT-base-multilingual-cased** architecture, making it capable of processing multilingual citation data.

## Intended Usage

This model is designed for extracting citation information and parsing raw citation text into structured fields. It is ideal for automating citation metadata extraction in academic databases, manuscript workflows, or citation analysis tools.

## How to use

```python
from transformers import pipeline

# Load the model
citation_parser = pipeline("ner", model="SIRIS-Lab/citation-parser-ENTITY")

# Example citation text
citation_text = "MURAKAMI, H等: 'Unique thermal behavior of acrylic PSAs bearing long alkyl side groups and crosslinked by aluminum chelate', 《EUROPEAN POLYMER JOURNAL》"

# Parse the citation
result = citation_parser(citation_text)
print(result)
```

## Training

The model was trained using the `SIRIS-Lab/citation-parser-ENTITY` dataset consisting of:
- **Training data**: 2419 samples
- **Test data**: 269 samples

The following hyperparameters were used for training:

- **Base Model**: `distilbert/distilbert-base-multilingual-cased`
- **Batch Size**: 16
- **Number of Epochs**: 10
- **Learning Rate**: 2e-5
- **Weight Decay**: 0.01
- **Max Sequence Length**: 512

## Evaluation Metrics

The model's performance was evaluated on the test set, and the following results were obtained:

| Metric               | Value   |
|----------------------|---------|
| **Overall Precision** | 0.9448  |
| **Overall Recall**    | 0.9548  |
| **Overall F1**        | 0.9498  |
| **Overall Accuracy**  | 0.9759  |

### Class-wise Evaluation Metrics:

| Entity                     | Precision | Recall  | F1      | Samples |
|----------------------------|-----------|---------|---------|-----------------------|
| **ALL (overall avg)**                 |  0.9448    | 0.9548  | 0.9498  | 269                   |
|----------------------------|-----------|---------|---------|-----------------------|
| **AUTHORS**                 | 0.9577    | 0.9468  | 0.9522  | 263                   |
| **DOI**                     | 0.8333    | 0.9091  | 0.8696  | 22                    |
| **ISBN**                    | 1.0000    | 1.0000  | 1.0000  | 3                     |
| **ISSN**                    | 1.0000    | 1.0000  | 1.0000  | 34                    |
| **ISSUE**                   | 0.9385    | 0.9683  | 0.9531  | 63                    |
| **JOURNAL**                 | 0.8819    | 0.9228  | 0.9019  | 259                   |
| **LINK_ONLINE_AVAILABILITY**| 0.3333    | 0.5000  | 0.4000  | 2                     |
| **PAGE_FIRST**              | 1.0000    | 1.0000  | 1.0000  | 130                   |
| **PAGE_LAST**               | 0.9915    | 0.9832  | 0.9873  | 119                   |
| **PUBLICATION_YEAR**        | 0.9797    | 0.9732  | 0.9764  | 149                   |
| **PUBLISHER**               | 0.4231    | 0.5238  | 0.4681  | 21                    |
| **TITLE**                   | 0.9911    | 0.9867  | 0.9889  | 226                   |
| **VOLUME**                  | 0.9597    | 0.9520  | 0.9558  | 125   

## Additional Information

### Authors

SIRIS Lab, Research Division of SIRIS Academic.

### License

This work is distributed under an [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).

### Contact

For further information, send an email to either [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected]).