File size: 5,357 Bytes
44b0983 1c4d841 e0774eb 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 596dc70 44b0983 e0774eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
library_name: transformers
license: apache-2.0
datasets:
- SIRIS-Lab/citation-parser-ENTITY
language:
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
tags:
- citation
- science
- ner
base_model:
- distilbert/distilbert-base-multilingual-cased
---
# Citation Parsing (NER)
<!-- Provide a quick summary of what the model is/does. -->
The **Citation Parsing (NER)** model utilizes advanced Named Entity Recognition (NER) to extract key fields from citation texts. This model parses citations into structured data fields such as TITLE, AUTHORS, VOLUME, ISSUE, YEAR, DOI, ISSN, ISBN, FIRST_PAGE, LAST_PAGE, JOURNAL, and EDITOR.
## Overview
<details>
<summary>Click to expand</summary>
- **Model type:** Language Model
- **Architecture:** DistilBERT
- **Language:** Multilingual
- **License:** Apache 2.0
- **Task:** Named Entity Recognition (NER) for Citation Parsing
- **Dataset:** Custom Citation Parsing Dataset
- **Additional Resources:**
- [GitHub](https://github.com/sirisacademic/citation-parser)
</details>
## Model description
The **Citation Parsing (NER)** model is part of the [`Citation Parser`](https://github.com/sirisacademic/citation-parser) package. It is fine-tuned for extracting structured information from citation texts into the following key fields:
- `TITLE`
- `AUTHORS`
- `VOLUME`
- `ISSUE`
- `YEAR`
- `DOI`
- `ISSN`
- `ISBN`
- `FIRST_PAGE`
- `LAST_PAGE`
- `JOURNAL`
- `EDITOR`
This model was trained using the **DistilBERT-base-multilingual-cased** architecture, making it capable of processing multilingual citation data.
## Intended Usage
This model is designed for extracting citation information and parsing raw citation text into structured fields. It is ideal for automating citation metadata extraction in academic databases, manuscript workflows, or citation analysis tools.
## How to use
```python
from transformers import pipeline
# Load the model
citation_parser = pipeline("ner", model="SIRIS-Lab/citation-parser-ENTITY")
# Example citation text
citation_text = "MURAKAMI, H等: 'Unique thermal behavior of acrylic PSAs bearing long alkyl side groups and crosslinked by aluminum chelate', 《EUROPEAN POLYMER JOURNAL》"
# Parse the citation
result = citation_parser(citation_text)
print(result)
```
## Training
The model was trained using the `SIRIS-Lab/citation-parser-ENTITY` dataset consisting of:
- **Training data**: 2419 samples
- **Test data**: 269 samples
The following hyperparameters were used for training:
- **Base Model**: `distilbert/distilbert-base-multilingual-cased`
- **Batch Size**: 16
- **Number of Epochs**: 10
- **Learning Rate**: 2e-5
- **Weight Decay**: 0.01
- **Max Sequence Length**: 512
## Evaluation Metrics
The model's performance was evaluated on the test set, and the following results were obtained:
| Metric | Value |
|----------------------|---------|
| **Overall Precision** | 0.9448 |
| **Overall Recall** | 0.9548 |
| **Overall F1** | 0.9498 |
| **Overall Accuracy** | 0.9759 |
### Class-wise Evaluation Metrics:
| Entity | Precision | Recall | F1 | Samples |
|----------------------------|-----------|---------|---------|-----------------------|
| **ALL (overall avg)** | 0.9448 | 0.9548 | 0.9498 | 269 |
|----------------------------|-----------|---------|---------|-----------------------|
| **AUTHORS** | 0.9577 | 0.9468 | 0.9522 | 263 |
| **DOI** | 0.8333 | 0.9091 | 0.8696 | 22 |
| **ISBN** | 1.0000 | 1.0000 | 1.0000 | 3 |
| **ISSN** | 1.0000 | 1.0000 | 1.0000 | 34 |
| **ISSUE** | 0.9385 | 0.9683 | 0.9531 | 63 |
| **JOURNAL** | 0.8819 | 0.9228 | 0.9019 | 259 |
| **LINK_ONLINE_AVAILABILITY**| 0.3333 | 0.5000 | 0.4000 | 2 |
| **PAGE_FIRST** | 1.0000 | 1.0000 | 1.0000 | 130 |
| **PAGE_LAST** | 0.9915 | 0.9832 | 0.9873 | 119 |
| **PUBLICATION_YEAR** | 0.9797 | 0.9732 | 0.9764 | 149 |
| **PUBLISHER** | 0.4231 | 0.5238 | 0.4681 | 21 |
| **TITLE** | 0.9911 | 0.9867 | 0.9889 | 226 |
| **VOLUME** | 0.9597 | 0.9520 | 0.9558 | 125
## Additional Information
### Authors
SIRIS Lab, Research Division of SIRIS Academic.
### License
This work is distributed under an [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact
For further information, send an email to either [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected]). |