File size: 5,071 Bytes
297c44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import sys

import torch
import speechbrain as sb
from speechbrain.dataio import dataset
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml


class LM(sb.core.Brain):
    def compute_forward(self, batch, stage):
        batch = batch.to(self.device)
        tokens_bos, _ = batch.tokens_bos
        logits = self.hparams.model(tokens_bos)
        pred = self.hparams.log_softmax(logits)
        return pred

    def compute_objectives(self, predictions, batch, stage):
        batch = batch.to(self.device)
        tokens_eos, tokens_len = batch.tokens_eos
        loss = self.hparams.compute_cost(
            predictions, tokens_eos, length=tokens_len
        )
        return loss

    def fit_batch(self, batch):
        predictions = self.compute_forward(batch, sb.Stage.TRAIN)
        loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)

        (loss / self.hparams.accumulation_steps).backward()

        if self.step % self.hparams.accumulation_steps == 0:
            self.check_gradients(loss)

            self.optimizer.step()
            self.optimizer.zero_grad()

            if isinstance(
                self.hparams.lr_annealing, sb.nnet.schedulers.NoamScheduler
            ) or isinstance(
                self.hparams.lr_annealing,
                sb.nnet.schedulers.CyclicCosineScheduler,
            ):
                self.hparams.lr_annealing(self.optimizer)

        return loss

    def on_stage_end(self, stage, stage_loss, epoch):
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats

        if stage == sb.Stage.VALID and sb.utils.distributed.if_main_process():
            if not (
                isinstance(
                    self.hparams.lr_annealing, sb.nnet.schedulers.NoamScheduler
                )
                or isinstance(
                    self.hparams.lr_annealing,
                    sb.nnet.schedulers.CyclicCosineScheduler,
                )
            ):
                old_lr, new_lr = self.hparams.lr_annealing(stage_loss)
                sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
            else:
                old_lr = self.hparams.lr_annealing.current_lr

            self.hparams.train_logger.log_stats(
                stats_meta={"epoch": epoch, "lr": old_lr},
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta=stage_stats, min_keys=["loss"],
            )

        if stage == sb.Stage.TEST and sb.utils.distributed.if_main_process():
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )


def dataio_prepare(hparams):
    @sb.utils.data_pipeline.takes("transcription")
    @sb.utils.data_pipeline.provides(
        "transcription", "tokens_bos", "tokens_eos"
    )
    def transcription_pipline(transcription):
        yield transcription
        tokens_list = hparams["tokenizer"].encode_as_ids(transcription)
        tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
        yield tokens_bos
        tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
        yield tokens_eos

    data_folder = hparams["data_folder"]
    datasets = {}
    for dataset_name in ["train", "dev", "test"]:
        json_path = f"{data_folder}/{dataset_name}.json"
        datasets[dataset_name] = dataset.DynamicItemDataset.from_json(
            json_path=json_path,
            replacements={"data_root": data_folder},
            dynamic_items=[transcription_pipline],
            output_keys=["transcription", "tokens_bos", "tokens_eos"],
        )

    return datasets


if __name__ == "__main__":
    hparams_file_path, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
    with open(hparams_file_path) as hparams_file:
        hparams = load_hyperpyyaml(hparams_file, overrides)

    sb.utils.distributed.ddp_init_group(run_opts)

    sb.create_experiment_directory(
        experiment_directory=hparams["output_folder"],
        hyperparams_to_save=hparams_file_path,
        overrides=overrides,
    )

    run_on_main(hparams["pretrainer"].collect_files)
    hparams["pretrainer"].load_collected(device=run_opts["device"])

    datasets = dataio_prepare(hparams)

    lm_brain = LM(
        modules=hparams["modules"],
        opt_class=hparams["optimizer"],
        hparams=hparams,
        run_opts=run_opts,
        checkpointer=hparams["checkpointer"],
    )

    lm_brain.fit(
        lm_brain.hparams.epoch_counter,
        datasets["train"],
        datasets["dev"],
        train_loader_kwargs=hparams["train_dataloader_opts"],
        valid_loader_kwargs=hparams["valid_dataloader_opts"],
    )

    # evaluation
    lm_brain.evaluate(
        datasets["test"],
        min_key="loss",
        test_loader_kwargs=hparams["test_dataloader_opts"],
    )