File size: 11,210 Bytes
297c44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import sys

import torch
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml


class ASR(sb.core.Brain):
    def compute_forward(self, batch, stage):
        batch = batch.to(self.device)
        wavs, wavs_len = batch.sig
        tokens_bos, _ = batch.tokens_bos
        feats = self.hparams.compute_features(wavs)
        current_epoch = self.hparams.epoch_counter.current
        feats = self.modules.normalize(feats, wavs_len, epoch=current_epoch)

        src = self.modules.CNN(feats)
        enc_out, pred = self.modules.Transformer(
            src, tokens_bos, wavs_len, pad_idx=self.hparams.pad_index
        )

        logits = self.modules.ctc_lin(enc_out)
        p_ctc = self.hparams.log_softmax(logits)

        pred = self.modules.seq_lin(pred)
        p_seq = self.hparams.log_softmax(pred)

        hyps = None
        if stage == sb.Stage.TRAIN:
            hyps = None
        elif stage == sb.Stage.VALID:
            hyps = None
            current_epoch = self.hparams.epoch_counter.current
            if current_epoch % self.hparams.valid_search_interval == 0:
                hyps, _ = self.hparams.valid_search(enc_out.detach(), wavs_len)
        elif stage == sb.Stage.TEST:
            hyps, _ = self.hparams.test_search(enc_out.detach(), wavs_len)

        return p_ctc, p_seq, wavs_len, hyps

    def compute_objectives(self, predictions, batch, stage):

        (p_ctc, p_seq, wavs_len, hyps,) = predictions

        ids = batch.id
        tokens_eos, tokens_eos_len = batch.tokens_eos
        tokens, tokens_len = batch.tokens

        attention_loss = self.hparams.seq_cost(
            p_seq, tokens_eos, length=tokens_eos_len
        )
        ctc_loss = self.hparams.ctc_cost(p_ctc, tokens, wavs_len, tokens_len)
        loss = (
            self.hparams.ctc_weight * ctc_loss
            + (1 - self.hparams.ctc_weight) * attention_loss
        )

        if stage != sb.Stage.TRAIN:
            current_epoch = self.hparams.epoch_counter.current
            valid_search_interval = self.hparams.valid_search_interval

            if current_epoch % valid_search_interval == 0 or (
                stage == sb.Stage.TEST
            ):
                predictions = [
                    hparams["tokenizer"].decode_ids(utt_seq).split(" ")
                    for utt_seq in hyps
                ]
                targets = [
                    transcription.split(" ")
                    for transcription in batch.transcription
                ]
                if self.hparams.remove_spaces:
                    predictions = [
                        "".join(prediction_words)
                        for prediction_words in predictions
                    ]
                    targets = [
                        "".join(target_words) for target_words in targets
                    ]
                    self.cer_metric.append(ids, predictions, targets)

            self.acc_metric.append(p_seq, tokens_eos, tokens_eos_len)

        return loss

    def fit_batch(self, batch):
        self.check_and_reset_optimizer()

        predictions = self.compute_forward(batch, sb.Stage.TRAIN)
        loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)

        (loss / self.hparams.gradient_accumulation).backward()

        if self.step % self.hparams.gradient_accumulation == 0:
            self.check_gradients(loss)

            self.optimizer.step()
            self.optimizer.zero_grad()

            self.hparams.noam_annealing(self.optimizer)

        return loss.detach()

    def evaluate_batch(self, batch, stage):
        with torch.no_grad():
            predictions = self.compute_forward(batch, stage=stage)
            loss = self.compute_objectives(predictions, batch, stage=stage)
        # origin function is call loss.detach().cpu()
        return loss.detach()

    def on_stage_start(self, stage, epoch):
        if stage != sb.Stage.TRAIN:
            self.acc_metric = self.hparams.acc_computer()
            self.cer_metric = self.hparams.cer_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["ACC"] = self.acc_metric.summarize()
            current_epoch = self.hparams.epoch_counter.current
            valid_search_interval = self.hparams.valid_search_interval
            if (
                current_epoch % valid_search_interval == 0
                or stage == sb.Stage.TEST
            ):
                stage_stats["CER"] = self.cer_metric.summarize("error_rate")

        if stage == sb.Stage.VALID and sb.utils.distributed.if_main_process():

            current_epoch = self.hparams.epoch_counter.current
            if current_epoch <= self.hparams.stage_one_epochs:
                lr = self.hparams.noam_annealing.current_lr
                steps = self.hparams.noam_annealing.n_steps
                optimizer = self.optimizer.__class__.__name__
            else:
                lr = self.hparams.lr_sgd
                steps = -1
                optimizer = self.optimizer.__class__.__name__

            epoch_stats = {
                "epoch": epoch,
                "lr": lr,
                "steps": steps,
                "optimizer": optimizer,
            }
            self.hparams.train_logger.log_stats(
                stats_meta=epoch_stats,
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"ACC": stage_stats["ACC"], "epoch": epoch},
                max_keys=["ACC"],
                num_to_keep=10,
            )

        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.cer_file, "w") as cer_file:
                self.cer_metric.write_stats(cer_file)

            self.checkpointer.save_and_keep_only(
                meta={"ACC": 1.1, "epoch": epoch},
                max_keys=["ACC"],
                num_to_keep=1,
            )

    def check_and_reset_optimizer(self):
        current_epoch = self.hparams.epoch_counter.current
        if not hasattr(self, "switched"):
            self.switched = False
            if isinstance(self.optimizer, torch.optim.SGD):
                self.switched = True

        if self.switched is True:
            return

        if current_epoch > self.hparams.stage_one_epochs:
            self.optimizer = self.hparams.SGD(self.modules.parameters())

            if self.checkpointer is not None:
                self.checkpointer.add_recoverable("optimizer", self.optimizer)

            self.switched = True

    def on_fit_start(self):
        """Initialize the right optimizer on the training start"""
        super().on_fit_start()

        current_epoch = self.hparams.epoch_counter.current
        current_optimizer = self.optimizer
        if current_epoch > self.hparams.stage_one_epochs:
            del self.optimizer
            self.optimizer = self.hparams.SGD(self.modules.parameters())

            if self.checkpointer is not None:
                group = current_optimizer.param_groups[0]
                if "momentum" not in group:
                    return
                self.checkpointer.recover_if_possible(
                    device=torch.device(self.device)
                )

    def on_evaluate_start(self, max_key=None, min_key=None):
        super().on_evaluate_start()

        checkpointers = self.checkpointer.find_checkpoints(
            max_key=max_key, min_key=min_key
        )
        checkpointer = sb.utils.checkpoints.average_checkpoints(
            checkpointers, recoverable_name="model", device=self.device
        )

        self.hparams.model.load_state_dict(checkpointer, strict=True)
        self.hparams.model.eval()


def dataio_prepare(hparams):
    @sb.utils.data_pipeline.takes("transcription")
    @sb.utils.data_pipeline.provides(
        "transcription", "tokens_bos", "tokens_eos", "tokens"
    )
    def transcription_pipline(transcription):
        yield transcription
        tokens_list = hparams["tokenizer"].encode_as_ids(transcription)
        tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
        yield tokens_bos
        tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
        yield tokens_eos
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    @sb.utils.data_pipeline.takes("wav")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipline(wav):
        sig = sb.dataio.dataio.read_audio(wav)
        return sig

    @sb.utils.data_pipeline.takes("wav")
    @sb.utils.data_pipeline.provides("sig")
    def sp_audio_pipline(wav):
        sig = sb.dataio.dataio.read_audio(wav)
        sig = sig.unsqueeze(0)
        sig = hparams["speed_perturb"](sig)
        sig = sig.squeeze(0)
        return sig

    datasets = {}
    data_folder = hparams["data_folder"]
    output_keys = [
        "transcription",
        "tokens_bos",
        "tokens_eos",
        "tokens",
        "sig",
        "id",
    ]
    default_dynamic_items = [transcription_pipline, audio_pipline]
    train_dynamic_item = [transcription_pipline, sp_audio_pipline]

    for dataset_name in ["train", "dev", "test"]:
        if dataset_name == "train":
            dynamic_items = train_dynamic_item
        else:
            dynamic_items = default_dynamic_items

        json_path = f"{data_folder}/{dataset_name}.json"
        datasets[dataset_name] = sb.dataio.dataset.DynamicItemDataset.from_json(
            json_path=json_path,
            replacements={"data_root": data_folder},
            dynamic_items=dynamic_items,
            output_keys=output_keys,
        )

    return datasets


if __name__ == "__main__":
    hparams_file_path, run_opts, overrides = sb.parse_arguments(sys.argv[1:])

    sb.utils.distributed.ddp_init_group(run_opts)

    with open(hparams_file_path) as hparams_file:
        hparams = load_hyperpyyaml(hparams_file, overrides)

    sb.create_experiment_directory(
        experiment_directory=hparams["output_folder"],
        hyperparams_to_save=hparams_file_path,
        overrides=overrides,
    )

    run_on_main(hparams["pretrainer"].collect_files)
    hparams["pretrainer"].load_collected(device=run_opts["device"])

    datasets = dataio_prepare(hparams)

    asr_brain = ASR(
        modules=hparams["modules"],
        opt_class=hparams["Adam"],
        hparams=hparams,
        run_opts=run_opts,
        checkpointer=hparams["checkpointer"],
    )

    asr_brain.fit(
        asr_brain.hparams.epoch_counter,
        datasets["train"],
        datasets["dev"],
        train_loader_kwargs=hparams["train_dataloader_opts"],
        valid_loader_kwargs=hparams["valid_dataloader_opts"],
    )

    # asr_brain.evaluate(
    #     datasets["test"],max_key="ACC", test_loader_kwargs=hparams["test_dataloader_opts"]
    # )