|
from typing import List |
|
import argparse |
|
import torch |
|
from speechbrain.pretrained import EncoderDecoderASR |
|
|
|
|
|
def asr_model_inference(asr_model: EncoderDecoderASR, audios: List[str]) -> List[str]: |
|
return [asr_model.transcribe_file(audio) for audio in audios] |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-I", dest="audio_file", required=True) |
|
|
|
args = parser.parse_args() |
|
|
|
asr_model = EncoderDecoderASR.from_hparams( |
|
source="./infernce", hparams_file="hyperparams.yaml", savedir="inference", run_opts={"device": "cpu"}) |
|
|
|
print(asr_model_inference(asr_model, [args.audio_file])) |