--- base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Model4_arabertv2_base_T2_WS_A100 results: [] --- # Model4_arabertv2_base_T2_WS_A100 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0694 - F1: 0.8430 - Roc Auc: 0.9128 - Accuracy: 0.7523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 193 | 0.0694 | 0.8430 | 0.9128 | 0.7523 | | No log | 2.0 | 386 | 0.0713 | 0.8489 | 0.9184 | 0.7598 | | 0.0183 | 3.0 | 579 | 0.0779 | 0.8377 | 0.9226 | 0.7412 | | 0.0183 | 4.0 | 772 | 0.0727 | 0.8455 | 0.9181 | 0.7523 | | 0.0183 | 5.0 | 965 | 0.0749 | 0.8555 | 0.9264 | 0.7672 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3