--- library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Now that the baffling, elongated, hyperreal coronation has occurred—no, not that one—and Liz Truss has become Prime Minister, a degree of intervention and action on energy bills has emerged, ahead of the looming socioeconomic catastrophe facing the country this winter. - text: But it needs to go much further. - text: What could possibly go wrong? - text: If you are White you might feel bad about hurting others or you might feel afraid to lose this privilege….Overcoming White privilege is a job that must start with the White community…. - text: '[JF: Obviously, immigration wasn’t stopped: the current population of the United States is 329.5 million—it passed 300 million in 2006.' inference: true --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A RandomForestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a RandomForestClassifier instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("SOUMYADEEPSAR/Setfit_designed_sample_random_forest_head") # Run inference preds = model("What could possibly go wrong?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 36.5327 | 97 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 100 | | 1 | 114 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0003 | 1 | 0.3958 | - | | 0.0172 | 50 | 0.343 | - | | 0.0345 | 100 | 0.2775 | - | | 0.0517 | 150 | 0.2861 | - | | 0.0689 | 200 | 0.1937 | - | | 0.0861 | 250 | 0.0891 | - | | 0.1034 | 300 | 0.0089 | - | | 0.1206 | 350 | 0.0179 | - | | 0.1378 | 400 | 0.0002 | - | | 0.1551 | 450 | 0.0004 | - | | 0.1723 | 500 | 0.0002 | - | | 0.1895 | 550 | 0.0001 | - | | 0.2068 | 600 | 0.0001 | - | | 0.2240 | 650 | 0.0002 | - | | 0.2412 | 700 | 0.0001 | - | | 0.2584 | 750 | 0.0001 | - | | 0.2757 | 800 | 0.0001 | - | | 0.2929 | 850 | 0.0001 | - | | 0.3101 | 900 | 0.0001 | - | | 0.3274 | 950 | 0.0002 | - | | 0.3446 | 1000 | 0.0 | - | | 0.3618 | 1050 | 0.0001 | - | | 0.3790 | 1100 | 0.0001 | - | | 0.3963 | 1150 | 0.0001 | - | | 0.4135 | 1200 | 0.0001 | - | | 0.4307 | 1250 | 0.0001 | - | | 0.4480 | 1300 | 0.0001 | - | | 0.4652 | 1350 | 0.0 | - | | 0.4824 | 1400 | 0.0 | - | | 0.4997 | 1450 | 0.0 | - | | 0.5169 | 1500 | 0.0 | - | | 0.5341 | 1550 | 0.0001 | - | | 0.5513 | 1600 | 0.0 | - | | 0.5686 | 1650 | 0.0 | - | | 0.5858 | 1700 | 0.0 | - | | 0.6030 | 1750 | 0.0 | - | | 0.6203 | 1800 | 0.0 | - | | 0.6375 | 1850 | 0.0 | - | | 0.6547 | 1900 | 0.0 | - | | 0.6720 | 1950 | 0.0 | - | | 0.6892 | 2000 | 0.0 | - | | 0.7064 | 2050 | 0.0 | - | | 0.7236 | 2100 | 0.0 | - | | 0.7409 | 2150 | 0.0 | - | | 0.7581 | 2200 | 0.0 | - | | 0.7753 | 2250 | 0.0 | - | | 0.7926 | 2300 | 0.0001 | - | | 0.8098 | 2350 | 0.0001 | - | | 0.8270 | 2400 | 0.0 | - | | 0.8442 | 2450 | 0.0001 | - | | 0.8615 | 2500 | 0.0 | - | | 0.8787 | 2550 | 0.0 | - | | 0.8959 | 2600 | 0.0 | - | | 0.9132 | 2650 | 0.0 | - | | 0.9304 | 2700 | 0.0 | - | | 0.9476 | 2750 | 0.0 | - | | 0.9649 | 2800 | 0.0 | - | | 0.9821 | 2850 | 0.0 | - | | 0.9993 | 2900 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.3.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```