SOUMYADEEPSAR commited on
Commit
0087204
·
verified ·
1 Parent(s): aff1609

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ metrics:
4
+ - accuracy
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - setfit
8
+ - sentence-transformers
9
+ - text-classification
10
+ - generated_from_setfit_trainer
11
+ widget:
12
+ - text: Now that the baffling, elongated, hyperreal coronation has occurred—no, not
13
+ that one—and Liz Truss has become Prime Minister, a degree of intervention and
14
+ action on energy bills has emerged, ahead of the looming socioeconomic catastrophe
15
+ facing the country this winter.
16
+ - text: But it needs to go much further.
17
+ - text: What could possibly go wrong?
18
+ - text: If you are White you might feel bad about hurting others or you might feel
19
+ afraid to lose this privilege….Overcoming White privilege is a job that must start
20
+ with the White community….
21
+ - text: '[JF: Obviously, immigration wasn’t stopped: the current population of the
22
+ United States is 329.5 million—it passed 300 million in 2006.'
23
+ inference: true
24
+ ---
25
+
26
+ # SetFit
27
+
28
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A SVC instance is used for classification.
29
+
30
+ The model has been trained using an efficient few-shot learning technique that involves:
31
+
32
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
33
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
34
+
35
+ ## Model Details
36
+
37
+ ### Model Description
38
+ - **Model Type:** SetFit
39
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
40
+ - **Classification head:** a SVC instance
41
+ - **Maximum Sequence Length:** 384 tokens
42
+ - **Number of Classes:** 2 classes
43
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
44
+ <!-- - **Language:** Unknown -->
45
+ <!-- - **License:** Unknown -->
46
+
47
+ ### Model Sources
48
+
49
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
50
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
51
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
52
+
53
+ ### Model Labels
54
+ | Label | Examples |
55
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
56
+ | 0 | <ul><li>'ESG funds often charge many times more for investment funds that are nearly indistinguishable from those without the ESG title.'</li><li>'They are California, Florida, Illinois, Nebraska, New York, and Wyoming.'</li><li>'And so it goes.'</li></ul> |
57
+ | 1 | <ul><li>'Republicans attempted to pass a resolution that would have enabled Congress to force workers to accept a deal, which was fortunately blocked by (who else) Senator Bernie Sanders.'</li><li>'No government ever surrenders power, even its emergency powers—not really.'</li><li>'No citizen in a democratic society should want executives from $10trn financial institutions to play a larger role than they already do in defining and implementing social values.'</li></ul> |
58
+
59
+ ## Uses
60
+
61
+ ### Direct Use for Inference
62
+
63
+ First install the SetFit library:
64
+
65
+ ```bash
66
+ pip install setfit
67
+ ```
68
+
69
+ Then you can load this model and run inference.
70
+
71
+ ```python
72
+ from setfit import SetFitModel
73
+
74
+ # Download from the 🤗 Hub
75
+ model = SetFitModel.from_pretrained("SOUMYADEEPSAR/Setfit_random_sample_svm_head")
76
+ # Run inference
77
+ preds = model("What could possibly go wrong?")
78
+ ```
79
+
80
+ <!--
81
+ ### Downstream Use
82
+
83
+ *List how someone could finetune this model on their own dataset.*
84
+ -->
85
+
86
+ <!--
87
+ ### Out-of-Scope Use
88
+
89
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
90
+ -->
91
+
92
+ <!--
93
+ ## Bias, Risks and Limitations
94
+
95
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
96
+ -->
97
+
98
+ <!--
99
+ ### Recommendations
100
+
101
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
102
+ -->
103
+
104
+ ## Training Details
105
+
106
+ ### Training Set Metrics
107
+ | Training set | Min | Median | Max |
108
+ |:-------------|:----|:--------|:----|
109
+ | Word count | 3 | 23.4159 | 68 |
110
+
111
+ | Label | Training Sample Count |
112
+ |:------|:----------------------|
113
+ | 0 | 136 |
114
+ | 1 | 78 |
115
+
116
+ ### Training Hyperparameters
117
+ - batch_size: (8, 8)
118
+ - num_epochs: (1, 1)
119
+ - max_steps: -1
120
+ - sampling_strategy: oversampling
121
+ - body_learning_rate: (2e-05, 2e-05)
122
+ - head_learning_rate: 2e-05
123
+ - loss: CosineSimilarityLoss
124
+ - distance_metric: cosine_distance
125
+ - margin: 0.25
126
+ - end_to_end: False
127
+ - use_amp: False
128
+ - warmup_proportion: 0.1
129
+ - seed: 42
130
+ - eval_max_steps: -1
131
+ - load_best_model_at_end: False
132
+
133
+ ### Training Results
134
+ | Epoch | Step | Training Loss | Validation Loss |
135
+ |:------:|:----:|:-------------:|:---------------:|
136
+ | 0.0003 | 1 | 0.3597 | - |
137
+ | 0.0161 | 50 | 0.2693 | - |
138
+ | 0.0323 | 100 | 0.2501 | - |
139
+ | 0.0484 | 150 | 0.2691 | - |
140
+ | 0.0645 | 200 | 0.063 | - |
141
+ | 0.0806 | 250 | 0.0179 | - |
142
+ | 0.0968 | 300 | 0.0044 | - |
143
+ | 0.1129 | 350 | 0.0003 | - |
144
+ | 0.1290 | 400 | 0.0005 | - |
145
+ | 0.1452 | 450 | 0.0002 | - |
146
+ | 0.1613 | 500 | 0.0003 | - |
147
+ | 0.1774 | 550 | 0.0001 | - |
148
+ | 0.1935 | 600 | 0.0001 | - |
149
+ | 0.2097 | 650 | 0.0001 | - |
150
+ | 0.2258 | 700 | 0.0001 | - |
151
+ | 0.2419 | 750 | 0.0001 | - |
152
+ | 0.2581 | 800 | 0.0 | - |
153
+ | 0.2742 | 850 | 0.0001 | - |
154
+ | 0.2903 | 900 | 0.0002 | - |
155
+ | 0.3065 | 950 | 0.0 | - |
156
+ | 0.3226 | 1000 | 0.0 | - |
157
+ | 0.3387 | 1050 | 0.0002 | - |
158
+ | 0.3548 | 1100 | 0.0 | - |
159
+ | 0.3710 | 1150 | 0.0001 | - |
160
+ | 0.3871 | 1200 | 0.0001 | - |
161
+ | 0.4032 | 1250 | 0.0 | - |
162
+ | 0.4194 | 1300 | 0.0 | - |
163
+ | 0.4355 | 1350 | 0.0 | - |
164
+ | 0.4516 | 1400 | 0.0001 | - |
165
+ | 0.4677 | 1450 | 0.0 | - |
166
+ | 0.4839 | 1500 | 0.0 | - |
167
+ | 0.5 | 1550 | 0.0001 | - |
168
+ | 0.5161 | 1600 | 0.0001 | - |
169
+ | 0.5323 | 1650 | 0.0 | - |
170
+ | 0.5484 | 1700 | 0.0 | - |
171
+ | 0.5645 | 1750 | 0.0 | - |
172
+ | 0.5806 | 1800 | 0.0 | - |
173
+ | 0.5968 | 1850 | 0.0 | - |
174
+ | 0.6129 | 1900 | 0.0 | - |
175
+ | 0.6290 | 1950 | 0.0001 | - |
176
+ | 0.6452 | 2000 | 0.0 | - |
177
+ | 0.6613 | 2050 | 0.0 | - |
178
+ | 0.6774 | 2100 | 0.0 | - |
179
+ | 0.6935 | 2150 | 0.0001 | - |
180
+ | 0.7097 | 2200 | 0.0 | - |
181
+ | 0.7258 | 2250 | 0.0 | - |
182
+ | 0.7419 | 2300 | 0.0001 | - |
183
+ | 0.7581 | 2350 | 0.0001 | - |
184
+ | 0.7742 | 2400 | 0.0001 | - |
185
+ | 0.7903 | 2450 | 0.0 | - |
186
+ | 0.8065 | 2500 | 0.0 | - |
187
+ | 0.8226 | 2550 | 0.0 | - |
188
+ | 0.8387 | 2600 | 0.0 | - |
189
+ | 0.8548 | 2650 | 0.0001 | - |
190
+ | 0.8710 | 2700 | 0.0001 | - |
191
+ | 0.8871 | 2750 | 0.0 | - |
192
+ | 0.9032 | 2800 | 0.0 | - |
193
+ | 0.9194 | 2850 | 0.0 | - |
194
+ | 0.9355 | 2900 | 0.0001 | - |
195
+ | 0.9516 | 2950 | 0.0 | - |
196
+ | 0.9677 | 3000 | 0.0001 | - |
197
+ | 0.9839 | 3050 | 0.0 | - |
198
+ | 1.0 | 3100 | 0.0 | - |
199
+
200
+ ### Framework Versions
201
+ - Python: 3.10.12
202
+ - SetFit: 1.0.3
203
+ - Sentence Transformers: 3.0.1
204
+ - Transformers: 4.39.0
205
+ - PyTorch: 2.3.0+cu121
206
+ - Datasets: 2.20.0
207
+ - Tokenizers: 0.15.2
208
+
209
+ ## Citation
210
+
211
+ ### BibTeX
212
+ ```bibtex
213
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
214
+ doi = {10.48550/ARXIV.2209.11055},
215
+ url = {https://arxiv.org/abs/2209.11055},
216
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
217
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
218
+ title = {Efficient Few-Shot Learning Without Prompts},
219
+ publisher = {arXiv},
220
+ year = {2022},
221
+ copyright = {Creative Commons Attribution 4.0 International}
222
+ }
223
+ ```
224
+
225
+ <!--
226
+ ## Glossary
227
+
228
+ *Clearly define terms in order to be accessible across audiences.*
229
+ -->
230
+
231
+ <!--
232
+ ## Model Card Authors
233
+
234
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
235
+ -->
236
+
237
+ <!--
238
+ ## Model Card Contact
239
+
240
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
241
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f08cf9353b5d8747a06789992fd2a93bab52c5793e8d9436e506a7d9002d16
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4746947ce49169108e45a1a8b4948d891eb7ccead7c3cbc4570eca040612959c
3
+ size 75611
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff