File size: 13,110 Bytes
81ec35f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
<!DOCTYPE html>
<html>
<head>
<title>HTML Charset</title>
<meta charset="utf-8">
</head>
<body>
<h1>Model Name</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong>&nbsp; Provide the model name and a 1-2 sentence summary of what the model is.</p>
<p>&nbsp;</p>
<p><code>model_id</code></p>
<p>&nbsp;</p>
<p><code>model_summary</code></p>
<p>&nbsp;</p>
<h1>&nbsp;Table of Contents</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> This section addresses questions around how the model is intended to be used in different applied contexts, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. Note this section is not intended to include the license usage details. For that, link directly to the license.</p>
<p>&nbsp;</p>
<h1>&nbsp;Model Details</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> This section provides basic information about what the model is, its current status, where it came from. It should be useful for anyone who wants to reference the model.</p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Model Description</h2>
<p>&nbsp;</p>
<p><code>model_description</code></p>
<p>&nbsp;</p>
<p><em>Provide details about the model. This includes the architecture, version, if it was introduced in a paper, if an implementation is available, and the creators. Any copyright should be attributed here. General information about training procedures, parameters, important disclaimers can also be mentioned in this section.</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>Developed by:</strong> <code>developers</code></li>
</ul>
<p>&nbsp;</p>
<p><em>List (and ideally link to) the people who built the model.</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>Funded by:</strong> <code>funded_by</code></li>
</ul>
<p>&nbsp;</p>
<p><em>List (and ideally link to) &nbsp;the funding sources that financially, computationally, or otherwise supported &nbsp;or enabled this model.</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>Shared by [optional]:</strong> <code>shared_by</code></li>
</ul>
<p>&nbsp;</p>
<p><em>List (and ideally link to) the people/organization making the model available online.</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>Model type:</strong> <code>model_type</code></li>
</ul>
<p>&nbsp;</p>
<p><em>You can name the &ldquo;type&rdquo; as:</em></p>
<p>&nbsp;</p>
<p><em>1. Supervision/Learning Method</em></p>
<p>&nbsp;</p>
<p><em>2. Machine Learning Type</em></p>
<p>&nbsp;</p>
<p><em>3. Modality</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>Language(s)</strong> [NLP]: <code>language</code></li>
</ul>
<p>&nbsp;</p>
<p><em>Use this field when the system uses or processes natural (human) language..</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>License:</strong> <code>license</code></li>
</ul>
<p>&nbsp;</p>
<p><em>Name and link to the license being used.</em></p>
<p>&nbsp;</p>
<ul>
    <li><strong>Finetuned From Model [optional]:</strong> <code>base_model</code></li>
</ul>
<p>&nbsp;</p>
<p><em>** this model has another model as its base, link to that model here.</em></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Model Sources optional</h2>
<p>&nbsp;</p>
<ul>
    <li><strong>Repository:</strong> <code>repo</code></li>
    <li>&nbsp;</li>
    <li><strong>Paper [optional]:</strong> <code>paper</code></li>
    <li>&nbsp;</li>
    <li><strong>Demo [optional]:</strong> <code>demo</code></li>
</ul>
<p>&nbsp;</p>
<p><em>Provide sources for the user to  see the model and its details. Additional kinds of resources &ndash; training logs, lessons learned, etc. &ndash; belong in the <a href="https://huggingface.co/docs/hub/en/model-card-annotated#more-information-optional">More Information</a> section. If you include one thing for this section, link to the repository.</em></p>
<p>&nbsp;</p>
<h1>&nbsp;Uses</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> questions around how the model is intended to be used in different applied contexts, discusses the foreseeable users of the model (including those ... by the model). &nbsp;intended to include the license usage details. For that, link directly to the license.</p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Direct Use</h2>
<p>&nbsp;</p>
<p><code>direct_use</code></p>
<p>&nbsp;</p>
<p><em>Explain how the model can be used without fine-tuning, post-processing, or plugging into a pipeline. An example code snippet is recommended.</em></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Downstream Use optional</h2>
<p>&nbsp;</p>
<p><code>downstream_use</code></p>
<p>&nbsp;</p>
<p><em>Explain how this model can be used and fine-tuned for a task or when plugged into a larger ecosystem or app. An example code snippet is recommended.</em></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Out-of-Scope Use</h2>
<p>&nbsp;</p>
<p><code>out_of_scope_use</code></p>
<p>&nbsp;</p>
<p><em>List how the model may foreseeably be misused (used in a way it will not work for) and address what users ought not do with the model.</em></p>
<p>&nbsp;</p>
<h1>&nbsp;Bias, Risks, and Limitations</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> This section identifies harms, misunderstandings, and technical and sociotechnical limitations. It also provides potential mitigations. Bias, risks, and limitations can sometimes be inseparable/refer to the same issues. Generally, bias and risks are sociotechnical, while limitations are technical:</p>
<p>&nbsp;</p>
<ul>
    <li>A <strong>bias</strong> is a stereotype or disproportionate performance (skew) for some subpopulations.</li>
    <li>&nbsp;</li>
    <li>A <strong>risk</strong> is a socially-sensitive issue that the model might cause.</li>
    <li>&nbsp;</li>
    <li>A <strong>limitation</strong> is a likely failure to  be addressed following the listed Recommendations.</li>
</ul>
<p>&nbsp;</p>
<p><code>bias_risks_limitations</code></p>
<p>&nbsp;</p>
<p><em>What are the known or foreseeable issues stemming from this model?</em></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Recommendations</h2>
<p>&nbsp;</p>
<p><code>bias_recommendations</code></p>
<p>&nbsp;</p>
<p><em>What are recommendations with respect to the foreseeable issues? This can include everything from “downsample your image” to filtering explicit content..</em></p>
<p>&nbsp;</p>
<h1>&nbsp;Training Details</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> This section provides information to describe and replicate training, including the training data, the speed and size of training elements, and the environmental impact of training. <a href="https://huggingface.co/docs/hub/en/model-card-annotated#technical-specifications-optional">Technical Specifications</a> as well, and content here should link to that section when it is relevant to the training procedure. &nbsp;useful for people who want to learn more about the model inputs  training footprint. for anyone who wants to know the basics of what the model is learning.</p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Training Data</h2>
<p>&nbsp;</p>
<p><code>training_data</code></p>
<p>&nbsp;</p>
<p><em>Write 1-2 sentences  related to data pre-processing or additional filtering  <a href="https://huggingface.co/docs/hub/en/model-card-annotated#more-information-optional">More Information</a>.</em></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp; Procedure optional</h2>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Preprocessing</h3>
<p>&nbsp;</p>
<p><code>preprocessing</code></p>
<p>&nbsp;</p>
<p><em>Detail tokenization, resizing/rewriting (depending on the modality), etc.</em></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Speeds, Sizes, Times</h3>
<p>&nbsp;</p>
<p><code>speeds_sizes_times</code></p>
<p>&nbsp;</p>
<p><em>Detail throughput, start/end time, checkpoint sizes, etc.</em></p>
<p>&nbsp;</p>
<h1>&nbsp;Evaluation</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong>  evaluation protocols. Target fairness metrics should be decided based on  errors are more likely to be identified in light of the model use.  specify  model&rsquo;s evaluation results in a structured way in the model card metadata.  parsed and displayed in a widget on the model page. See <a href="https://huggingface.co/docs/hub/model-cards#evaluation-results" rel="nofollow">https://huggingface.co/docs/hub/model-cards#evaluation-results</a>.</p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp; Data, Factors &amp; Metrics</h2>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Testing Data</h3>
<p>&nbsp;</p>
<p><code>testing_data</code></p>
<p>&nbsp;</p>
<p><em>Ideally this links to a Dataset Card for  testing data.</em></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Factors</h3>
<p>&nbsp;</p>
<p><code>testing_factors</code></p>
<p>&nbsp;</p>
<p><em>What are the foreseeable circumstances that will influence how the model behaves? This includes domain and context, as well as population subgroups. Evaluation should ideally be <strong>disaggregated</strong> across factors in order to uncover disparities in performance.</em></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Metrics</h3>
<p>&nbsp;</p>
<p><code>testing_metrics</code></p>
<p>&nbsp;</p>
<p><em> metrics for evaluation in light of tradeoffs between different errors?</em></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Results</h2>
<p>&nbsp;</p>
<p><code>results</code></p>
<p>&nbsp;</p>
<p><em>Results based on the Factors and Metrics defined above.</em></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Summary</h3>
<p>&nbsp;</p>
<p><code>results_summary</code></p>
<p>&nbsp;</p>
<p><em>What do the results say? This can function as a kind of tl;dr for general audiences..</em></p>
<p>&nbsp;</p>
<h1>&nbsp;Model Examination optional</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> examination</p>
<p>&nbsp;</p>
<p><code>model_examination</code></p>
<p>&nbsp;</p>
<h1>&nbsp;Environmental Impact</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> Summarizes the information necessary to calculate environmental impacts .</p>
<p>&nbsp;</p>
<ul>
    <li><strong>Hardware Type:</strong> <code>hardware_type</code></li>
    <li>&nbsp;</li>
    <li><strong>Hours used:</strong> <code>hours_used</code></li>
    <li>&nbsp;</li>
    <li><strong>Cloud Provider:</strong> <code>cloud_provider</code></li>
    <li>&nbsp;</li>
    <li><strong>Compute Region:</strong> <code>cloud_region</code></li>
    <li>&nbsp;</li>
    <li><strong>Carbon Emitted:</strong> <code>co2_emitted</code></li>
</ul>
<p>&nbsp;</p>
<p><em>Carbon emissions can be estimated using the <a href="https://mlco2.github.io/impact#compute" rel="nofollow">Machine Learning Impact calculator</a> presented in <a href="https://arxiv.org/abs/1910.09700" rel="nofollow">source</a>.</em></p>
<p>&nbsp;</p>
<h1>&nbsp;Technical Specifications optional</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> This section includes details about the model  architecture, and the compute infrastructure. </p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Model Architecture and Objective</h2>
<p>&nbsp;</p>
<p><code>model_specs</code></p>
<p>&nbsp;</p>
<h2><br></h2>
<h2>&nbsp;Compute Infrastructure</h2>
<p>&nbsp;</p>
<p><code>compute_infrastructure</code></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Hardware</h3>
<p>&nbsp;</p>
<p><code>hardware_requirements</code></p>
<p>&nbsp;</p>
<p><em>What are the minimum hardware requirements, e.g. processing, storage, and memory requirements?</em></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;Software</h3>
<p>&nbsp;</p>
<p><code>software</code></p>
<p>&nbsp;</p>
<h1>&nbsp;optional</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> The developers&rsquo; preferred citation for this model. </p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;BibTeX</h3>
<p>&nbsp;</p>
<p><code>citation_bibtex</code></p>
<p>&nbsp;</p>
<h3><br></h3>
<h3>&nbsp;APA</h3>
<p>&nbsp;</p>
<p><code>citation_apa</code></p>
<p>&nbsp;</p>
<h1>&nbsp;Glossary optional</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> This section defines common terms and how metrics are calculated.</p>
<p>&nbsp;</p>
<p><code>glossary</code></p>
<p>&nbsp;</p>
<p><em>Clearly define terms in order to be accessible across audiences.</em></p>
<p>&nbsp;</p>
<h1>&nbsp;More Information optional</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> lessons learned and more .</p>
<p>&nbsp;</p>
<p><code>more_information</code></p>
<p>&nbsp;</p>
<h1>&nbsp;Model Card Authors optional</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> who create the model card, .</p>
<p>&nbsp;</p>
<p><code>model_card_authors</code></p>
<p>&nbsp;</p>
<h1>&nbsp;Model Card Contact</h1>
<p>&nbsp;</p>
<p><strong>Section Overview:</strong> contact</p>
<p>&nbsp;</p>
<p><code>model_card_contact</code></p>
<p>&nbsp;</p>
<div>
    <h1>&nbsp;How to Get Started with the Model</h1>&nbsp;<p><strong>Section Overview:</strong> Provides a code snippet to show how to use the model.</p>&nbsp;<p><code>get_started_code</code></p>&nbsp;<p><br></p>&nbsp;<div aria-live="assertive" aria-atomic="true"><br></div>
</div>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</p>
<div>
    <div><a href="https://huggingface.co/docs/hub/en/model-cards"><span>&larr;</span>Model Cards</a></div>
</div>
</body>
</html>