FBAGSTM commited on
Commit
40a1fb0
·
verified ·
1 Parent(s): 63fdc2f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -102,7 +102,7 @@ For an image resolution of NxM and P classes
102
  * The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon.
103
  ### Accuracy with Food-101 dataset
104
 
105
- Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) , License [-](), Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000
106
 
107
  | Model | Format | Resolution | Top 1 Accuracy |
108
  |--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
@@ -118,7 +118,7 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
118
 
119
  ### Accuracy with ImageNet
120
 
121
- Dataset details: [link](https://www.image-net.org), License: BSD-3-Clause, Quotation[[4]](#4)
122
  Number of classes: 1000.
123
  To perform the quantization, we calibrated the activations with a random subset of the training set.
124
  For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set.
 
102
  * The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon.
103
  ### Accuracy with Food-101 dataset
104
 
105
+ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) , Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000
106
 
107
  | Model | Format | Resolution | Top 1 Accuracy |
108
  |--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
 
118
 
119
  ### Accuracy with ImageNet
120
 
121
+ Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4)
122
  Number of classes: 1000.
123
  To perform the quantization, we calibrated the activations with a random subset of the training set.
124
  For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set.