Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# MobileNet v2
|
@@ -83,66 +83,66 @@ For an image resolution of NxM and P classes
|
|
83 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
84 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
85 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
86 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | food-101 | Int8 | 128x128x3 | STM32N6 | 240 | 0.0 | 715.67 | 10.0.0 | 2.0.0 |
|
87 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 980 | 0.0 | 730.7 | 10.0.0 | 2.0.0 |
|
88 |
-
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 2058 | 0.0 | 3110.05 | 10.0.0 | 2.0.0 |
|
89 |
| [MobileNet v2 0.35 fft](ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Person | Int8 | 128x128x3 | STM32N6 | 240 | 0.0 | 589.45 | 10.0.0 | 2.0.0 |
|
90 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32N6 | 240 | 0.0 | 1840.94 | 10.0.0 | 2.0.0 |
|
91 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 980 | 0.0 | 1855.97 | 10.0.0 | 2.0.0 |
|
92 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 2058 | 0.0 | 4235.31 | 10.0.0 | 2.0.0 |
|
93 |
-
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 2361 | 0.0 | 7315.69 | 10.0.0 | 2.0.0 |
|
94 |
|
95 |
|
96 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
97 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
98 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
99 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | food-101 | Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 3.33 | 300.30 | 10.0.0 | 2.0.0 |
|
100 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 6.12 | 163.40 | 10.0.0 | 2.0.0 |
|
101 |
-
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 18.08 | 55.32 | 10.0.0 | 2.0.0 |
|
102 |
| [MobileNet v2 0.35 fft](ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.99 | 334.45 | 10.0.0 | 2.0.0 |
|
103 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.35 | 157.48 | 10.0.0 | 2.0.0 |
|
104 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 9.14 | 109.40 | 10.0.0 | 2.0.0 |
|
105 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 21.08 | 47.44 | 10.0.0 | 2.0.0 |
|
106 |
-
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 35.34 | 28.30 | 10.0.0 | 2.0.0 |
|
107 |
|
108 |
|
109 |
### Reference **MCU** memory footprint based on Flowers and ImageNet dataset (see Accuracy for details on dataset)
|
110 |
|
111 |
| Model | Dataset | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
112 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------|---------|----------------|-------------|---------------|------------|------------|-------------|----------------------|
|
113 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | STM32H7 | 237.32 KiB | 30.14 KiB | 406.86 KiB | 108.29 KiB | 267.46 KiB | 515.15 KiB | 10.0.0 |
|
114 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | STM32H7 | 832.64 KiB | 30.19 KiB | 406.86 KiB | 108.40 KiB | 862.83 KiB | 515.26 KiB | 10.0.0 |
|
115 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32H7 | 237.32 KiB | 30.14 KiB | 1654.5 KiB KiB | 108.29 KiB | 267.46 KiB | 1762.79 KiB | 10.0.0 |
|
116 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H7 | 832.64 KiB | 30.19 KiB | 1654.5 KiB | 108.40 KiB | 862.83 KiB | 1762.9 KiB | 10.0.0 |
|
117 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H7 | 1727.02 KiB | 30.19 KiB | 3458.97 KiB | 157.37 KiB | 1757.21 KiB | 3616.34 KiB | 10.0.0 |
|
118 |
-
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H7 | 2332.2 KiB | 30.19 KiB | 6015.34 KiB | 191.16 KiB | 2362.39 KiB | 6206.53 KiB | 10.0.0 |
|
119 |
|
120 |
### Reference **MCU** inference time based on Flowers and ImageNet dataset (see Accuracy for details on dataset)
|
121 |
|
122 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
123 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------|------------------|------------------|-------------|---------------------|-----------------------|
|
124 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 94.34 ms | 10.0.0 |
|
125 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 290.75 ms | 10.0.0 |
|
126 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 116.13 ms | 10.0.0 |
|
127 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 313.92 ms | 10.0.0 |
|
128 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1106.64 ms | 10.0.0 |
|
129 |
-
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2010.66 ms | 10.0.0 |
|
130 |
|
131 |
### Reference **MPU** inference time based on Flowers and ImageNet dataset (see Accuracy for details on dataset)
|
132 |
| Model | Dataset | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
133 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
134 |
-
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | ImageNet | Int8 | 224x224x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 11.92 ms | 92.74 | 7.26 |0 | v5.1.0 | OpenVX |
|
135 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | per-channel ** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 76.29 ms | 3.13 | 96.87 |0 | v5.1.0 | OpenVX |
|
136 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | per-channel ** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 25.51 ms | 4.37 | 95.63 |0 | v5.1.0 | OpenVX |
|
137 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | per-channel ** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 9.14 ms | 12.06 | 87.94 |0 | v5.1.0 | OpenVX |
|
138 |
-
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | ImageNet | Int8 | 224x224x3 | per-tensor | STM32MP157F-DK2 | 2 CPU | 800 MHz | 332.9 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
139 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 128x128x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 194.1 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
140 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 54.52 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
141 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 17.16 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
142 |
-
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | ImageNet | Int8 | 224x224x3 | per-tensor | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 415.7 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
143 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 128x128x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 308.80 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
144 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 54.85 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
145 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 27.17 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
146 |
|
147 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
148 |
### Accuracy with Flowers dataset
|
@@ -152,18 +152,18 @@ Dataset details: [link](http://download.tensorflow.org/example_images/flower_pho
|
|
152 |
|
153 |
| Model | Format | Resolution | Top 1 Accuracy |
|
154 |
|-------|--------|------------|----------------|
|
155 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 87.06 % |
|
156 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 87.47 % |
|
157 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 88.15 % |
|
158 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 88.01 % |
|
159 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 91.83 % |
|
160 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 91.01 % |
|
161 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs.h5) | Float | 224x224x3 | 88.69 % |
|
162 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs_int8.tflite) | Int8 | 224x224x3 | 88.83 % |
|
163 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl.h5) | Float | 224x224x3 | 88.96 % |
|
164 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl_int8.tflite) | Int8 | 224x224x3 | 88.01 % |
|
165 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft.h5) | Float | 224x224x3 | 93.6 % |
|
166 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Int8 | 224x224x3 | 92.78 % |
|
167 |
|
168 |
|
169 |
### Accuracy with Plant-village dataset
|
@@ -173,18 +173,18 @@ Dataset details: [link](https://data.mendeley.com/datasets/tywbtsjrjv/1) , Licen
|
|
173 |
|
174 |
| Model | Format | Resolution | Top 1 Accuracy |
|
175 |
|-------|--------|------------|----------------|
|
176 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 99.86 % |
|
177 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 99.83 % |
|
178 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 93.51 % |
|
179 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 92.33 % |
|
180 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 99.77 % |
|
181 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 99.48 % |
|
182 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs.h5) | Float | 224x224x3 | 99.86 % |
|
183 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.81 % |
|
184 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl.h5) | Float | 224x224x3 | 93.62 % |
|
185 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl_int8.tflite) | Int8 | 224x224x3 | 92.8 % |
|
186 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft.h5) | Float | 224x224x3 | 99.95 % |
|
187 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.68 % |
|
188 |
|
189 |
|
190 |
### Accuracy with Food-101 dataset
|
@@ -193,20 +193,20 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
193 |
|
194 |
| Model | Format | Resolution | Top 1 Accuracy |
|
195 |
|-------|--------|------------|----------------|
|
196 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 64.22 % |
|
197 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 63.41 % |
|
198 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 44.74 % |
|
199 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 42.01 % |
|
200 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 64.22 % |
|
201 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 63.41 % |
|
202 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs.h5) | Float | 224x224x3 | 72.31 % |
|
203 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs_int8.tflite) | Int8 | 224x224x3 | 72.05 % |
|
204 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl.h5) | Float | 224x224x3 | 49.01 % |
|
205 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl_int8.tflite) | Int8 | 224x224x3 | 47.26 % |
|
206 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft.h5) | Float | 224x224x3 | 73.76 % |
|
207 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Int8 | 224x224x3 | 73.16 % |
|
208 |
-
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft.h5) | Float | 224x224x3 | 77.77 % |
|
209 |
-
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite) | Int8 | 224x224x3 | 77.09 % |
|
210 |
|
211 |
|
212 |
### Accuracy with person dataset
|
@@ -216,12 +216,12 @@ Dataset details: [link](https://cocodataset.org/) , License [Creative Commons At
|
|
216 |
|
217 |
| Model | Format | Resolution | Top 1 Accuracy |
|
218 |
|------------|--------|-----------|----------------|
|
219 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 92.56 % |
|
220 |
-
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 92.44 % |
|
221 |
-
| [MobileNet v2 0.35 tl ](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 92.28 % |
|
222 |
-
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 91.63 % |
|
223 |
-
| [MobileNet v2 0.35 fft ](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 95.37 % |
|
224 |
-
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 94.95 % |
|
225 |
|
226 |
|
227 |
### Accuracy with ImageNet
|
@@ -233,15 +233,15 @@ For the sake of simplicity, the accuracy reported here was estimated on the 5000
|
|
233 |
|
234 |
| Model | Format | Resolution | Top 1 Accuracy |
|
235 |
|----------|--------|------------|----------------|
|
236 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128.h5) | Float | 128x128x3 | 46.96 % |
|
237 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | Int8 | 128x128x3 | 43.94 % |
|
238 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224.h5) | Float | 224x224x3 | 56.44 % |
|
239 |
-
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | Int8 | 224x224x3 | 54.7 % |
|
240 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224.h5) | Float | 224x224x3 | 68.87 % |
|
241 |
-
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | Int8 | 224x224x3 | 67.97 % |
|
242 |
-
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | Int8 | 224x224x3 | 64.53 % |
|
243 |
-
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224.h5) | Float | 224x224x3 | 71.97 % |
|
244 |
-
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | Int8 | 224x224x3 | 71.46 % |
|
245 |
|
246 |
|
247 |
## Retraining and Integration in a simple example:
|
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# MobileNet v2
|
|
|
83 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
84 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
85 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
86 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | food-101 | Int8 | 128x128x3 | STM32N6 | 240 | 0.0 | 715.67 | 10.0.0 | 2.0.0 |
|
87 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 980 | 0.0 | 730.7 | 10.0.0 | 2.0.0 |
|
88 |
+
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 2058 | 0.0 | 3110.05 | 10.0.0 | 2.0.0 |
|
89 |
| [MobileNet v2 0.35 fft](ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Person | Int8 | 128x128x3 | STM32N6 | 240 | 0.0 | 589.45 | 10.0.0 | 2.0.0 |
|
90 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32N6 | 240 | 0.0 | 1840.94 | 10.0.0 | 2.0.0 |
|
91 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 980 | 0.0 | 1855.97 | 10.0.0 | 2.0.0 |
|
92 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 2058 | 0.0 | 4235.31 | 10.0.0 | 2.0.0 |
|
93 |
+
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 2361 | 0.0 | 7315.69 | 10.0.0 | 2.0.0 |
|
94 |
|
95 |
|
96 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
97 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
98 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
99 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | food-101 | Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 3.33 | 300.30 | 10.0.0 | 2.0.0 |
|
100 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 6.12 | 163.40 | 10.0.0 | 2.0.0 |
|
101 |
+
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 18.08 | 55.32 | 10.0.0 | 2.0.0 |
|
102 |
| [MobileNet v2 0.35 fft](ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.99 | 334.45 | 10.0.0 | 2.0.0 |
|
103 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.35 | 157.48 | 10.0.0 | 2.0.0 |
|
104 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 9.14 | 109.40 | 10.0.0 | 2.0.0 |
|
105 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 21.08 | 47.44 | 10.0.0 | 2.0.0 |
|
106 |
+
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 35.34 | 28.30 | 10.0.0 | 2.0.0 |
|
107 |
|
108 |
|
109 |
### Reference **MCU** memory footprint based on Flowers and ImageNet dataset (see Accuracy for details on dataset)
|
110 |
|
111 |
| Model | Dataset | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
112 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------|---------|----------------|-------------|---------------|------------|------------|-------------|----------------------|
|
113 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | STM32H7 | 237.32 KiB | 30.14 KiB | 406.86 KiB | 108.29 KiB | 267.46 KiB | 515.15 KiB | 10.0.0 |
|
114 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | STM32H7 | 832.64 KiB | 30.19 KiB | 406.86 KiB | 108.40 KiB | 862.83 KiB | 515.26 KiB | 10.0.0 |
|
115 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32H7 | 237.32 KiB | 30.14 KiB | 1654.5 KiB KiB | 108.29 KiB | 267.46 KiB | 1762.79 KiB | 10.0.0 |
|
116 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H7 | 832.64 KiB | 30.19 KiB | 1654.5 KiB | 108.40 KiB | 862.83 KiB | 1762.9 KiB | 10.0.0 |
|
117 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H7 | 1727.02 KiB | 30.19 KiB | 3458.97 KiB | 157.37 KiB | 1757.21 KiB | 3616.34 KiB | 10.0.0 |
|
118 |
+
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H7 | 2332.2 KiB | 30.19 KiB | 6015.34 KiB | 191.16 KiB | 2362.39 KiB | 6206.53 KiB | 10.0.0 |
|
119 |
|
120 |
### Reference **MCU** inference time based on Flowers and ImageNet dataset (see Accuracy for details on dataset)
|
121 |
|
122 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
123 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------|------------------|------------------|-------------|---------------------|-----------------------|
|
124 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 94.34 ms | 10.0.0 |
|
125 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 290.75 ms | 10.0.0 |
|
126 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | ImageNet | Int8 | 128x128x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 116.13 ms | 10.0.0 |
|
127 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 313.92 ms | 10.0.0 |
|
128 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1106.64 ms | 10.0.0 |
|
129 |
+
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2010.66 ms | 10.0.0 |
|
130 |
|
131 |
### Reference **MPU** inference time based on Flowers and ImageNet dataset (see Accuracy for details on dataset)
|
132 |
| Model | Dataset | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
133 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
134 |
+
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | ImageNet | Int8 | 224x224x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 11.92 ms | 92.74 | 7.26 |0 | v5.1.0 | OpenVX |
|
135 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | per-channel ** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 76.29 ms | 3.13 | 96.87 |0 | v5.1.0 | OpenVX |
|
136 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | per-channel ** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 25.51 ms | 4.37 | 95.63 |0 | v5.1.0 | OpenVX |
|
137 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | per-channel ** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 9.14 ms | 12.06 | 87.94 |0 | v5.1.0 | OpenVX |
|
138 |
+
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | ImageNet | Int8 | 224x224x3 | per-tensor | STM32MP157F-DK2 | 2 CPU | 800 MHz | 332.9 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
139 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 128x128x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 194.1 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
140 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 54.52 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
141 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 17.16 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
142 |
+
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | ImageNet | Int8 | 224x224x3 | per-tensor | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 415.7 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
143 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | ImageNet | Int8 | 128x128x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 308.80 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
144 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Flowers | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 54.85 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
145 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Flowers | Int8 | 128x128x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 27.17 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
146 |
|
147 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
148 |
### Accuracy with Flowers dataset
|
|
|
152 |
|
153 |
| Model | Format | Resolution | Top 1 Accuracy |
|
154 |
|-------|--------|------------|----------------|
|
155 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 87.06 % |
|
156 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 87.47 % |
|
157 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 88.15 % |
|
158 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 88.01 % |
|
159 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 91.83 % |
|
160 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 91.01 % |
|
161 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs.h5) | Float | 224x224x3 | 88.69 % |
|
162 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs_int8.tflite) | Int8 | 224x224x3 | 88.83 % |
|
163 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl.h5) | Float | 224x224x3 | 88.96 % |
|
164 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl_int8.tflite) | Int8 | 224x224x3 | 88.01 % |
|
165 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft.h5) | Float | 224x224x3 | 93.6 % |
|
166 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Int8 | 224x224x3 | 92.78 % |
|
167 |
|
168 |
|
169 |
### Accuracy with Plant-village dataset
|
|
|
173 |
|
174 |
| Model | Format | Resolution | Top 1 Accuracy |
|
175 |
|-------|--------|------------|----------------|
|
176 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 99.86 % |
|
177 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 99.83 % |
|
178 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 93.51 % |
|
179 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 92.33 % |
|
180 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 99.77 % |
|
181 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 99.48 % |
|
182 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs.h5) | Float | 224x224x3 | 99.86 % |
|
183 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.81 % |
|
184 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl.h5) | Float | 224x224x3 | 93.62 % |
|
185 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl_int8.tflite) | Int8 | 224x224x3 | 92.8 % |
|
186 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft.h5) | Float | 224x224x3 | 99.95 % |
|
187 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.68 % |
|
188 |
|
189 |
|
190 |
### Accuracy with Food-101 dataset
|
|
|
193 |
|
194 |
| Model | Format | Resolution | Top 1 Accuracy |
|
195 |
|-------|--------|------------|----------------|
|
196 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 64.22 % |
|
197 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 63.41 % |
|
198 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 44.74 % |
|
199 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 42.01 % |
|
200 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 64.22 % |
|
201 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 63.41 % |
|
202 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs.h5) | Float | 224x224x3 | 72.31 % |
|
203 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tfs/mobilenet_v2_0.35_224_tfs_int8.tflite) | Int8 | 224x224x3 | 72.05 % |
|
204 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl.h5) | Float | 224x224x3 | 49.01 % |
|
205 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_tl/mobilenet_v2_0.35_224_tl_int8.tflite) | Int8 | 224x224x3 | 47.26 % |
|
206 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft.h5) | Float | 224x224x3 | 73.76 % |
|
207 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite) | Int8 | 224x224x3 | 73.16 % |
|
208 |
+
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft.h5) | Float | 224x224x3 | 77.77 % |
|
209 |
+
| [MobileNet v2 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite) | Int8 | 224x224x3 | 77.09 % |
|
210 |
|
211 |
|
212 |
### Accuracy with person dataset
|
|
|
216 |
|
217 |
| Model | Format | Resolution | Top 1 Accuracy |
|
218 |
|------------|--------|-----------|----------------|
|
219 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs.h5) | Float | 128x128x3 | 92.56 % |
|
220 |
+
| [MobileNet v2 0.35 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tfs/mobilenet_v2_0.35_128_tfs_int8.tflite) | Int8 | 128x128x3 | 92.44 % |
|
221 |
+
| [MobileNet v2 0.35 tl ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl.h5) | Float | 128x128x3 | 92.28 % |
|
222 |
+
| [MobileNet v2 0.35 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_tl/mobilenet_v2_0.35_128_tl_int8.tflite) | Int8 | 128x128x3 | 91.63 % |
|
223 |
+
| [MobileNet v2 0.35 fft ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft.h5) | Float | 128x128x3 | 95.37 % |
|
224 |
+
| [MobileNet v2 0.35 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite) | Int8 | 128x128x3 | 94.95 % |
|
225 |
|
226 |
|
227 |
### Accuracy with ImageNet
|
|
|
233 |
|
234 |
| Model | Format | Resolution | Top 1 Accuracy |
|
235 |
|----------|--------|------------|----------------|
|
236 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128.h5) | Float | 128x128x3 | 46.96 % |
|
237 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_128/mobilenet_v2_0.35_128_int8.tflite) | Int8 | 128x128x3 | 43.94 % |
|
238 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224.h5) | Float | 224x224x3 | 56.44 % |
|
239 |
+
| [MobileNet v2 0.35](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_0.35_224/mobilenet_v2_0.35_224_int8.tflite) | Int8 | 224x224x3 | 54.7 % |
|
240 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224.h5) | Float | 224x224x3 | 68.87 % |
|
241 |
+
| [MobileNet v2 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite) | Int8 | 224x224x3 | 67.97 % |
|
242 |
+
| [MobileNet v2 1.0_per_tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8_per_tensor.tflite) | Int8 | 224x224x3 | 64.53 % |
|
243 |
+
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224.h5) | Float | 224x224x3 | 71.97 % |
|
244 |
+
| [MobileNet v2 1.4](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite) | Int8 | 224x224x3 | 71.46 % |
|
245 |
|
246 |
|
247 |
## Retraining and Integration in a simple example:
|