Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# ResNet50 v2
|
@@ -70,22 +70,22 @@ For an image resolution of NxM and P classes
|
|
70 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
71 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
72 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
73 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
|
74 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
|
75 |
|
76 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
77 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
78 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
79 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
|
80 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
|
81 |
|
82 |
|
83 |
### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
84 |
|
85 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
86 |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
87 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 23240.96 KiB | 226.05 KiB | 2183.09 KiB | 23467.01 KiB | 10.0.0 |
|
88 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 25042.47 KiB | 226.05 KiB | 2183.09 KiB | 25268.52 KiB | 10.0.0 |
|
89 |
|
90 |
|
91 |
### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
@@ -93,8 +93,8 @@ For an image resolution of NxM and P classes
|
|
93 |
|
94 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
95 |
|-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
|
96 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11354.82 ms | 10.0.0 |
|
97 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11368.81 ms | 10.0.0 |
|
98 |
|
99 |
|
100 |
|
@@ -104,8 +104,8 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
104 |
|
105 |
| Model | Format | Resolution | Top 1 Accuracy |
|
106 |
|-------|--------|------------|----------------|
|
107 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft.h5) | Float | 224x224x3 | 71.53 % |
|
108 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | 70.07 % |
|
109 |
|
110 |
|
111 |
### Accuracy with ImageNet dataset
|
@@ -117,8 +117,8 @@ For the sake of simplicity, the accuracy reported here was estimated on the 5000
|
|
117 |
|
118 |
|model | Format | Resolution | Top 1 Accuracy |
|
119 |
|---------|--------|------------|----------------|
|
120 |
-
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224.h5) | Float | 224x224x3 | 66.38 % |
|
121 |
-
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | 65.99 % |
|
122 |
|
123 |
|
124 |
|
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# ResNet50 v2
|
|
|
70 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
71 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
72 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
73 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
|
74 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
|
75 |
|
76 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
77 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
78 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
79 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
|
80 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
|
81 |
|
82 |
|
83 |
### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
84 |
|
85 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
86 |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
87 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 23240.96 KiB | 226.05 KiB | 2183.09 KiB | 23467.01 KiB | 10.0.0 |
|
88 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 25042.47 KiB | 226.05 KiB | 2183.09 KiB | 25268.52 KiB | 10.0.0 |
|
89 |
|
90 |
|
91 |
### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
|
|
93 |
|
94 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
95 |
|-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
|
96 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11354.82 ms | 10.0.0 |
|
97 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11368.81 ms | 10.0.0 |
|
98 |
|
99 |
|
100 |
|
|
|
104 |
|
105 |
| Model | Format | Resolution | Top 1 Accuracy |
|
106 |
|-------|--------|------------|----------------|
|
107 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft.h5) | Float | 224x224x3 | 71.53 % |
|
108 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | 70.07 % |
|
109 |
|
110 |
|
111 |
### Accuracy with ImageNet dataset
|
|
|
117 |
|
118 |
|model | Format | Resolution | Top 1 Accuracy |
|
119 |
|---------|--------|------------|----------------|
|
120 |
+
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224.h5) | Float | 224x224x3 | 66.38 % |
|
121 |
+
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | 65.99 % |
|
122 |
|
123 |
|
124 |
|