Image Classification
FBAGSTM commited on
Commit
f7a97eb
·
verified ·
1 Parent(s): b5b9880

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -2,7 +2,7 @@
2
  license: other
3
  license_name: sla0044
4
  license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
6
  pipeline_tag: image-classification
7
  ---
8
  # ResNet50 v2
@@ -70,22 +70,22 @@ For an image resolution of NxM and P classes
70
  ### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
71
  |Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
72
  |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
73
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
74
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
75
 
76
  ### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
77
  | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
78
  |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
79
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
80
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
81
 
82
 
83
  ### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
84
 
85
  | Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
86
  |--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
87
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 23240.96 KiB | 226.05 KiB | 2183.09 KiB | 23467.01 KiB | 10.0.0 |
88
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 25042.47 KiB | 226.05 KiB | 2183.09 KiB | 25268.52 KiB | 10.0.0 |
89
 
90
 
91
  ### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
@@ -93,8 +93,8 @@ For an image resolution of NxM and P classes
93
 
94
  | Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
95
  |-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
96
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11354.82 ms | 10.0.0 |
97
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11368.81 ms | 10.0.0 |
98
 
99
 
100
 
@@ -104,8 +104,8 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
104
 
105
  | Model | Format | Resolution | Top 1 Accuracy |
106
  |-------|--------|------------|----------------|
107
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft.h5) | Float | 224x224x3 | 71.53 % |
108
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | 70.07 % |
109
 
110
 
111
  ### Accuracy with ImageNet dataset
@@ -117,8 +117,8 @@ For the sake of simplicity, the accuracy reported here was estimated on the 5000
117
 
118
  |model | Format | Resolution | Top 1 Accuracy |
119
  |---------|--------|------------|----------------|
120
- | [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224.h5) | Float | 224x224x3 | 66.38 % |
121
- | [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | 65.99 % |
122
 
123
 
124
 
 
2
  license: other
3
  license_name: sla0044
4
  license_link: >-
5
+ https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
6
  pipeline_tag: image-classification
7
  ---
8
  # ResNet50 v2
 
70
  ### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
71
  |Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
72
  |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
73
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
74
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
75
 
76
  ### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
77
  | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
78
  |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
79
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
80
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
81
 
82
 
83
  ### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
84
 
85
  | Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
86
  |--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
87
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 23240.96 KiB | 226.05 KiB | 2183.09 KiB | 23467.01 KiB | 10.0.0 |
88
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 25042.47 KiB | 226.05 KiB | 2183.09 KiB | 25268.52 KiB | 10.0.0 |
89
 
90
 
91
  ### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
 
93
 
94
  | Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
95
  |-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
96
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11354.82 ms | 10.0.0 |
97
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11368.81 ms | 10.0.0 |
98
 
99
 
100
 
 
104
 
105
  | Model | Format | Resolution | Top 1 Accuracy |
106
  |-------|--------|------------|----------------|
107
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft.h5) | Float | 224x224x3 | 71.53 % |
108
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | 70.07 % |
109
 
110
 
111
  ### Accuracy with ImageNet dataset
 
117
 
118
  |model | Format | Resolution | Top 1 Accuracy |
119
  |---------|--------|------------|----------------|
120
+ | [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224.h5) | Float | 224x224x3 | 66.38 % |
121
+ | [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | 65.99 % |
122
 
123
 
124