Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,167 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: sla0044
|
4 |
+
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
+
pipeline_tag: image-classification
|
7 |
+
---
|
8 |
+
# ResNet v1
|
9 |
+
|
10 |
+
## **Use case** : `Image classification`
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
ResNet models perform image classification - they take images as input and classify the major object in the image into a
|
15 |
+
set of pre-defined classes. ResNet models provide very high accuracies with affordable model sizes. They are ideal for cases when high accuracy of classification is required.
|
16 |
+
ResNet models consist of residual blocks and came up to counter the effect of deteriorating accuracies with more layers due to network not learning the initial layers.
|
17 |
+
ResNet v1 uses post-activation for the residual blocks. The models below have 8 and 32 layers with ResNet v1 architecture.
|
18 |
+
(source: https://keras.io/api/applications/resnet/)
|
19 |
+
The model is quantized in int8 using tensorflow lite converter.
|
20 |
+
|
21 |
+
In addition, we introduce a new model family inspired from ResNet v1 which takes benefit from hybrid quantization.
|
22 |
+
Later on, they are named as ST ResNet 8 Hybrid v1 and ST ResNet 8 Hybrid v2.
|
23 |
+
By hybrid quantization, we mean that whenever it is possible, some network layers are quantized for weights and/or activations on less than 8 bits.
|
24 |
+
We used Larq library to define and train these models. In particular, in our topology some layers/activations are kept in 8 bits while others are in binary.
|
25 |
+
Please note that since this quantization is performed during training (Quantization Aware Training), these networks no longer need to be converted with tensorflow lite.
|
26 |
+
STM32Cube.AI is able to import them directly in .h5 format and to generate the corresponding optimized FW code.
|
27 |
+
Even if many layers are in binary, these models provide comparable accuracy to the full 8-bit ResNet v1 8 but have a significantly lower inference time.
|
28 |
+
|
29 |
+
|
30 |
+
## Network information
|
31 |
+
|
32 |
+
| Network Information | Value |
|
33 |
+
|-------------------------|-------------------------------------------------------------------------|
|
34 |
+
| Framework | TensorFlow Lite |
|
35 |
+
| Quantization | int8 |
|
36 |
+
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet |
|
37 |
+
| Paper | https://arxiv.org/abs/1512.03385 |
|
38 |
+
|
39 |
+
The models are quantized using tensorflow lite converter.
|
40 |
+
|
41 |
+
## Network inputs / outputs
|
42 |
+
|
43 |
+
For an image resolution of NxM and P classes
|
44 |
+
|
45 |
+
| Input Shape | Description |
|
46 |
+
|----------------|-------------------------------------------------------------|
|
47 |
+
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
|
48 |
+
|
49 |
+
| Output Shape | Description |
|
50 |
+
|----------------|-------------------------------------------------------------|
|
51 |
+
| (1, P) | Per-class confidence for P classes in FLOAT32 |
|
52 |
+
|
53 |
+
## Recommended Platforms
|
54 |
+
|
55 |
+
| Platform | Supported | Optimized |
|
56 |
+
|----------|-----------|-----------|
|
57 |
+
| STM32L0 | [] | [] |
|
58 |
+
| STM32L4 | [x] | [] |
|
59 |
+
| STM32U5 | [x] | [] |
|
60 |
+
| STM32H7 | [x] | [x] |
|
61 |
+
| STM32MP1 | [x] | [x]* |
|
62 |
+
| STM32MP2 | [x] | [] |
|
63 |
+
| STM32N6 | [x] | [] |
|
64 |
+
|
65 |
+
* Only for Cifar 100 models
|
66 |
+
|
67 |
+
# Performances
|
68 |
+
|
69 |
+
## Metrics
|
70 |
+
|
71 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
72 |
+
|
73 |
+
### Reference **MCU** memory footprint based on Cifar 10 dataset (see Accuracy for details on dataset)
|
74 |
+
|
75 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
76 |
+
|---------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|----------------|-------------|---------------|------------|-----------|-------------|-----------------------|
|
77 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 62.51 KiB | 7.21 KiB | 76.9 KiB | 56.45 KiB | 69.72 KiB | 133.35 KiB | 10.0.0 |
|
78 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | STM32H7 | 77.84 KiB | 18.38 KiB | 85.79 KiB | 61.75 KiB | 96.22 KiB | 147.54 KiB | 10.0.0 |
|
79 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | STM32H7 | 78.99 KiB | 18.38 KiB | 66.28 KiB | 60.99 KiB | 97.37 KiB | 127.27 KiB | 10.0.0 |
|
80 |
+
|
81 |
+
### Reference **MCU** inference time based on Cifar 10 dataset (see Accuracy for details on dataset)
|
82 |
+
|
83 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
84 |
+
|----------------------------------|--------|-------------|------------------|------------------|--------------|---------------------|-----------------------|
|
85 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.67 ms | 10.0.0 |
|
86 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.93 ms | 10.0.0 |
|
87 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 25.2 ms | 10.0.0 |
|
88 |
+
|
89 |
+
|
90 |
+
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
91 |
+
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
92 |
+
|---------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
93 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 2.02 ms | 12.26 | 87.74 | 0 | v5.1.0 | OpenVX |
|
94 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | TBD ms | 0 | 0 | 0 | v5.1.0 | OpenVX |
|
95 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | TBD ms | 0 | 0 | 0 | v5.1.0 | OpenVX |
|
96 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.50 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
97 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
98 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
99 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 10.77 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
100 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
101 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
102 |
+
|
103 |
+
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
104 |
+
|
105 |
+
### Reference **MCU** memory footprint based on Cifar 100 dataset (see Accuracy for details on dataset)
|
106 |
+
|
107 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash |
|
108 |
+
|----------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|----------------|-------------|---------------|------------|-------------|-------------|
|
109 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 45.41 KiB | 24.98 KiB | 464.38 KiB | 78.65 KiB | 70.39 KiB | 543.03 KiB |
|
110 |
+
|
111 |
+
|
112 |
+
### Reference **MCU** inference time based on Cifar 100 dataset (see Accuracy for details on dataset)
|
113 |
+
|
114 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) |
|
115 |
+
|----------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|------------------|--------------|---------------------|
|
116 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 177.7 ms |
|
117 |
+
|
118 |
+
|
119 |
+
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
120 |
+
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
121 |
+
|---------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
122 |
+
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 9.160 ms | 14.75 | 85.25 | 0 | v5.1.0 | OpenVX |
|
123 |
+
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 34.78 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
124 |
+
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 55.32 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
125 |
+
|
126 |
+
|
127 |
+
### Accuracy with Cifar10 dataset
|
128 |
+
|
129 |
+
Dataset details: [link](https://www.cs.toronto.edu/~kriz/cifar.html) ,
|
130 |
+
License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) , Quotation[[1]](#1) , Number of classes: 10, Number of
|
131 |
+
images: 60 000
|
132 |
+
|
133 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
134 |
+
|------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------|
|
135 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs.h5) | Float | 32x32x3 | 87.01 % |
|
136 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | 85.59 % |
|
137 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | 86 % |
|
138 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | 84.85 % |
|
139 |
+
|
140 |
+
|
141 |
+
### Accuracy with Cifar100 dataset
|
142 |
+
|
143 |
+
Dataset details: [link](https://www.cs.toronto.edu/~kriz/cifar.html) ,
|
144 |
+
License [CC0 4.0](https://creativecommons.org/licenses/by/4.0/), Quotation[[2]](#2) , Number of classes:100,
|
145 |
+
Number of images: 600 000
|
146 |
+
|
147 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
148 |
+
|----------------------------------------------------------------------------------------------------------------------|---------|------------|----------------|
|
149 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs.h5) | Float | 32x32x3 | 67.75 % |
|
150 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | 66.58 % |
|
151 |
+
|
152 |
+
## Retraining and Integration in a simple example:
|
153 |
+
|
154 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
155 |
+
|
156 |
+
|
157 |
+
# References
|
158 |
+
|
159 |
+
<a id="1">[1]</a>
|
160 |
+
"Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers.
|
161 |
+
|
162 |
+
<a id="2">[2]</a>
|
163 |
+
J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1
|
164 |
+
|
165 |
+
<a id="3">[3]</a>
|
166 |
+
L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014.
|
167 |
+
|