Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# ResNet v1
|
@@ -77,31 +77,31 @@ For an image resolution of NxM and P classes
|
|
77 |
|
78 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
79 |
|---------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|----------------|-------------|---------------|------------|-----------|-------------|-----------------------|
|
80 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 62.51 KiB | 7.21 KiB | 76.9 KiB | 56.45 KiB | 69.72 KiB | 133.35 KiB | 10.0.0 |
|
81 |
-
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | STM32H7 | 77.84 KiB | 18.38 KiB | 85.79 KiB | 61.75 KiB | 96.22 KiB | 147.54 KiB | 10.0.0 |
|
82 |
-
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | STM32H7 | 78.99 KiB | 18.38 KiB | 66.28 KiB | 60.99 KiB | 97.37 KiB | 127.27 KiB | 10.0.0 |
|
83 |
|
84 |
### Reference **MCU** inference time based on Cifar 10 dataset (see Accuracy for details on dataset)
|
85 |
|
86 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
87 |
|----------------------------------|--------|-------------|------------------|------------------|--------------|---------------------|-----------------------|
|
88 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.67 ms | 10.0.0 |
|
89 |
-
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.93 ms | 10.0.0 |
|
90 |
-
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 25.2 ms | 10.0.0 |
|
91 |
|
92 |
|
93 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
94 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
95 |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
96 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 2.02 ms | 12.26 | 87.74 | 0 | v5.1.0 | OpenVX |
|
97 |
-
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | TBD ms | 0 | 0 | 0 | v5.1.0 | OpenVX |
|
98 |
-
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | TBD ms | 0 | 0 | 0 | v5.1.0 | OpenVX |
|
99 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.50 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
100 |
-
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
101 |
-
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
102 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 10.77 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
103 |
-
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
104 |
-
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
105 |
|
106 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
107 |
|
@@ -109,22 +109,22 @@ For an image resolution of NxM and P classes
|
|
109 |
|
110 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash |
|
111 |
|----------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|----------------|-------------|---------------|------------|-------------|-------------|
|
112 |
-
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 45.41 KiB | 24.98 KiB | 464.38 KiB | 78.65 KiB | 70.39 KiB | 543.03 KiB |
|
113 |
|
114 |
|
115 |
### Reference **MCU** inference time based on Cifar 100 dataset (see Accuracy for details on dataset)
|
116 |
|
117 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) |
|
118 |
|----------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|------------------|--------------|---------------------|
|
119 |
-
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 177.7 ms |
|
120 |
|
121 |
|
122 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
123 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
124 |
|---------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
125 |
-
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 9.160 ms | 14.75 | 85.25 | 0 | v5.1.0 | OpenVX |
|
126 |
-
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 34.78 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
127 |
-
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 55.32 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
128 |
|
129 |
|
130 |
### Accuracy with Cifar10 dataset
|
@@ -135,10 +135,10 @@ images: 60 000
|
|
135 |
|
136 |
| Model | Format | Resolution | Top 1 Accuracy |
|
137 |
|------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------|
|
138 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs.h5) | Float | 32x32x3 | 87.01 % |
|
139 |
-
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | 85.59 % |
|
140 |
-
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | 86 % |
|
141 |
-
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | 84.85 % |
|
142 |
|
143 |
|
144 |
### Accuracy with Cifar100 dataset
|
@@ -149,8 +149,8 @@ Number of images: 600 000
|
|
149 |
|
150 |
| Model | Format | Resolution | Top 1 Accuracy |
|
151 |
|----------------------------------------------------------------------------------------------------------------------|---------|------------|----------------|
|
152 |
-
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs.h5) | Float | 32x32x3 | 67.75 % |
|
153 |
-
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | 66.58 % |
|
154 |
|
155 |
## Retraining and Integration in a simple example:
|
156 |
|
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# ResNet v1
|
|
|
77 |
|
78 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
79 |
|---------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|----------------|-------------|---------------|------------|-----------|-------------|-----------------------|
|
80 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 62.51 KiB | 7.21 KiB | 76.9 KiB | 56.45 KiB | 69.72 KiB | 133.35 KiB | 10.0.0 |
|
81 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | STM32H7 | 77.84 KiB | 18.38 KiB | 85.79 KiB | 61.75 KiB | 96.22 KiB | 147.54 KiB | 10.0.0 |
|
82 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | STM32H7 | 78.99 KiB | 18.38 KiB | 66.28 KiB | 60.99 KiB | 97.37 KiB | 127.27 KiB | 10.0.0 |
|
83 |
|
84 |
### Reference **MCU** inference time based on Cifar 10 dataset (see Accuracy for details on dataset)
|
85 |
|
86 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
87 |
|----------------------------------|--------|-------------|------------------|------------------|--------------|---------------------|-----------------------|
|
88 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.67 ms | 10.0.0 |
|
89 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.93 ms | 10.0.0 |
|
90 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 25.2 ms | 10.0.0 |
|
91 |
|
92 |
|
93 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
94 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
95 |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
96 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 2.02 ms | 12.26 | 87.74 | 0 | v5.1.0 | OpenVX |
|
97 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | TBD ms | 0 | 0 | 0 | v5.1.0 | OpenVX |
|
98 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | TBD ms | 0 | 0 | 0 | v5.1.0 | OpenVX |
|
99 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.50 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
100 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
101 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
102 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 10.77 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
103 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
104 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | TBD ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
105 |
|
106 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
107 |
|
|
|
109 |
|
110 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash |
|
111 |
|----------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|----------------|-------------|---------------|------------|-------------|-------------|
|
112 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 45.41 KiB | 24.98 KiB | 464.38 KiB | 78.65 KiB | 70.39 KiB | 543.03 KiB |
|
113 |
|
114 |
|
115 |
### Reference **MCU** inference time based on Cifar 100 dataset (see Accuracy for details on dataset)
|
116 |
|
117 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) |
|
118 |
|----------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|------------------|--------------|---------------------|
|
119 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 177.7 ms |
|
120 |
|
121 |
|
122 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
123 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
124 |
|---------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
125 |
+
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 9.160 ms | 14.75 | 85.25 | 0 | v5.1.0 | OpenVX |
|
126 |
+
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 34.78 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
127 |
+
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 55.32 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
128 |
|
129 |
|
130 |
### Accuracy with Cifar10 dataset
|
|
|
135 |
|
136 |
| Model | Format | Resolution | Top 1 Accuracy |
|
137 |
|------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------|
|
138 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs.h5) | Float | 32x32x3 | 87.01 % |
|
139 |
+
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite) | Int8 | 32x32x3 | 85.59 % |
|
140 |
+
| [ST ResNet 8 Hybrid v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5) | Hybrid | 32x32x3 | 86 % |
|
141 |
+
| [ST ResNet 8 Hybrid v2 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5) | Hybrid | 32x32x3 | 84.85 % |
|
142 |
|
143 |
|
144 |
### Accuracy with Cifar100 dataset
|
|
|
149 |
|
150 |
| Model | Format | Resolution | Top 1 Accuracy |
|
151 |
|----------------------------------------------------------------------------------------------------------------------|---------|------------|----------------|
|
152 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs.h5) | Float | 32x32x3 | 67.75 % |
|
153 |
+
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite) | Int8 | 32x32x3 | 66.58 % |
|
154 |
|
155 |
## Retraining and Integration in a simple example:
|
156 |
|