Image Classification
FBAGSTM commited on
Commit
1ce3a09
·
verified ·
1 Parent(s): e1993b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -6
README.md CHANGED
@@ -1,6 +1,122 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: sla0044
4
+ license_link: >-
5
+ https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
6
+ pipeline_tag: image-classification
7
+ ---
8
+ # ST MNIST v1
9
+
10
+ ## **Use case** : `Image classification`
11
+
12
+ # Model description
13
+
14
+
15
+ This folder contains a custom model ST-MNIST for MNIST type datasets. ST-MNIST model is a depthwise separable convolutional based model architecture and can be used for different MNIST use-cases, e.g. alphabet recognition, digit recognition, or fashion MNIST etc.
16
+
17
+
18
+ ST-MNIST model accepts an input shape of 28 x 28, which is standard for MNIST type datasets. The pretrained model is also quantized in int8 using tensorflow lite converter.
19
+
20
+ ## Network information
21
+
22
+
23
+ | Network Information | Value |
24
+ |-------------------------|-----------------|
25
+ | Framework | TensorFlow Lite |
26
+ | Quantization | int8 |
27
+
28
+
29
+ ## Network inputs / outputs
30
+
31
+
32
+ For an image resolution of 28x28 and 36 classes : 10 integers (from 0-9) and 26 alphabets (upper-case A-Z)
33
+
34
+ | Input Shape | Description |
35
+ | ----- | ----------- |
36
+ | (1, 28, 28, 1) | Single 28x28 grey-scale image with UINT8 values between 0 and 255 |
37
+
38
+ | Output Shape | Description |
39
+ | ----- | ----------- |
40
+ | (1, 36) | Per-class confidence for 36 classes in FLOAT32|
41
+
42
+
43
+ ## Recommended Platforms
44
+
45
+
46
+ | Platform | Supported | Recommended |
47
+ |----------|-----------|-----------|
48
+ | STM32L0 |[]|[]|
49
+ | STM32L4 |[x]|[x]|
50
+ | STM32U5 |[x]|[x]|
51
+ | STM32H7 |[x]|[x]|
52
+ | STM32MP1 |[x]|[]|
53
+ | STM32MP2 |[x]|[]|
54
+ | STM32N6 |[x]|[]|
55
+
56
+
57
+ # Performances
58
+
59
+ ## Metrics
60
+
61
+
62
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
63
+
64
+
65
+ ### Reference **MCU** memory footprint based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
66
+
67
+
68
+ | Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
69
+ |-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
70
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H7 | 17.21 KiB | 4.49 KiB | 10.08 KiB | 46.8 KiB | 21.7 KiB | 56.88 KiB | 10.0.0 |
71
+
72
+
73
+ ### Reference **MCU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
74
+
75
+
76
+ | Model | Format | Resolution | Board | Frequency | Inference time (ms) | STM32Cube.AI version |
77
+ |-------------------|--------|------------|------------------|---------------|---------------------|-----------------------|
78
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H747I-DISCO | 400 MHz | 3.41 ms | 10.0.0 |
79
+
80
+
81
+ ### Reference **MPU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
82
+ | Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
83
+ |---------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
84
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel** | STM32MP257F-DK2 | 2 CPU | 1500 MHz | 0.31 ms | 0 | 0 | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
85
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 0.69 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
86
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1.070 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
87
+
88
+ ** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
89
+
90
+ ### Accuracy with EMNIST-Byclass dataset
91
+
92
+
93
+ Dataset details: [link](https://www.nist.gov/itl/products-and-services/emnist-dataset) , by_class, digits from [0-9] and capital letters [A-Z]. Number of classes: 36, Number of train images: 533,993, Number of test images: 89,264.
94
+
95
+ | Model | Format | Resolution | Top 1 Accuracy |
96
+ |-------|--------|------------|----------------|
97
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs.h5) | Float | 28x28x1 | 91.89 % |
98
+ | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | 91.47 % |
99
+
100
+ Following we provide the confusion matrix for the model with Float32 weights.
101
+
102
+ ![plot](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/doc/img/st_emnist_by_class_confusion_matrix.png)
103
+
104
+ Following we provide the confusion matrix for the quantized model with INT8 weights.
105
+
106
+ ![plot](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/doc/img/st_emnist_by_class_confusion_matrix_int8.png)
107
+
108
+
109
+ ## Retraining and Integration in a simple example:
110
+
111
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
112
+
113
+
114
+ # References
115
+
116
+
117
+ <a id="1">[1]</a>
118
+ "EMNIST : NIST Special Dataset," [Online]. Available: https://www.nist.gov/itl/products-and-services/emnist-dataset.
119
+
120
+ <a id="2">[2]</a>
121
+ "EMNIST: an extension of MNIST to handwritten letters". https://arxiv.org/abs/1702.05373
122
+