Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,122 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: sla0044
|
4 |
+
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
+
pipeline_tag: image-classification
|
7 |
+
---
|
8 |
+
# ST MNIST v1
|
9 |
+
|
10 |
+
## **Use case** : `Image classification`
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
|
15 |
+
This folder contains a custom model ST-MNIST for MNIST type datasets. ST-MNIST model is a depthwise separable convolutional based model architecture and can be used for different MNIST use-cases, e.g. alphabet recognition, digit recognition, or fashion MNIST etc.
|
16 |
+
|
17 |
+
|
18 |
+
ST-MNIST model accepts an input shape of 28 x 28, which is standard for MNIST type datasets. The pretrained model is also quantized in int8 using tensorflow lite converter.
|
19 |
+
|
20 |
+
## Network information
|
21 |
+
|
22 |
+
|
23 |
+
| Network Information | Value |
|
24 |
+
|-------------------------|-----------------|
|
25 |
+
| Framework | TensorFlow Lite |
|
26 |
+
| Quantization | int8 |
|
27 |
+
|
28 |
+
|
29 |
+
## Network inputs / outputs
|
30 |
+
|
31 |
+
|
32 |
+
For an image resolution of 28x28 and 36 classes : 10 integers (from 0-9) and 26 alphabets (upper-case A-Z)
|
33 |
+
|
34 |
+
| Input Shape | Description |
|
35 |
+
| ----- | ----------- |
|
36 |
+
| (1, 28, 28, 1) | Single 28x28 grey-scale image with UINT8 values between 0 and 255 |
|
37 |
+
|
38 |
+
| Output Shape | Description |
|
39 |
+
| ----- | ----------- |
|
40 |
+
| (1, 36) | Per-class confidence for 36 classes in FLOAT32|
|
41 |
+
|
42 |
+
|
43 |
+
## Recommended Platforms
|
44 |
+
|
45 |
+
|
46 |
+
| Platform | Supported | Recommended |
|
47 |
+
|----------|-----------|-----------|
|
48 |
+
| STM32L0 |[]|[]|
|
49 |
+
| STM32L4 |[x]|[x]|
|
50 |
+
| STM32U5 |[x]|[x]|
|
51 |
+
| STM32H7 |[x]|[x]|
|
52 |
+
| STM32MP1 |[x]|[]|
|
53 |
+
| STM32MP2 |[x]|[]|
|
54 |
+
| STM32N6 |[x]|[]|
|
55 |
+
|
56 |
+
|
57 |
+
# Performances
|
58 |
+
|
59 |
+
## Metrics
|
60 |
+
|
61 |
+
|
62 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
63 |
+
|
64 |
+
|
65 |
+
### Reference **MCU** memory footprint based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
66 |
+
|
67 |
+
|
68 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
69 |
+
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
70 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H7 | 17.21 KiB | 4.49 KiB | 10.08 KiB | 46.8 KiB | 21.7 KiB | 56.88 KiB | 10.0.0 |
|
71 |
+
|
72 |
+
|
73 |
+
### Reference **MCU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
74 |
+
|
75 |
+
|
76 |
+
| Model | Format | Resolution | Board | Frequency | Inference time (ms) | STM32Cube.AI version |
|
77 |
+
|-------------------|--------|------------|------------------|---------------|---------------------|-----------------------|
|
78 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H747I-DISCO | 400 MHz | 3.41 ms | 10.0.0 |
|
79 |
+
|
80 |
+
|
81 |
+
### Reference **MPU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
82 |
+
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
83 |
+
|---------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
84 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel** | STM32MP257F-DK2 | 2 CPU | 1500 MHz | 0.31 ms | 0 | 0 | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
85 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 0.69 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
86 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1.070 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
87 |
+
|
88 |
+
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
89 |
+
|
90 |
+
### Accuracy with EMNIST-Byclass dataset
|
91 |
+
|
92 |
+
|
93 |
+
Dataset details: [link](https://www.nist.gov/itl/products-and-services/emnist-dataset) , by_class, digits from [0-9] and capital letters [A-Z]. Number of classes: 36, Number of train images: 533,993, Number of test images: 89,264.
|
94 |
+
|
95 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
96 |
+
|-------|--------|------------|----------------|
|
97 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs.h5) | Float | 28x28x1 | 91.89 % |
|
98 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | 91.47 % |
|
99 |
+
|
100 |
+
Following we provide the confusion matrix for the model with Float32 weights.
|
101 |
+
|
102 |
+

|
103 |
+
|
104 |
+
Following we provide the confusion matrix for the quantized model with INT8 weights.
|
105 |
+
|
106 |
+

|
107 |
+
|
108 |
+
|
109 |
+
## Retraining and Integration in a simple example:
|
110 |
+
|
111 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
112 |
+
|
113 |
+
|
114 |
+
# References
|
115 |
+
|
116 |
+
|
117 |
+
<a id="1">[1]</a>
|
118 |
+
"EMNIST : NIST Special Dataset," [Online]. Available: https://www.nist.gov/itl/products-and-services/emnist-dataset.
|
119 |
+
|
120 |
+
<a id="2">[2]</a>
|
121 |
+
"EMNIST: an extension of MNIST to handwritten letters". https://arxiv.org/abs/1702.05373
|
122 |
+
|