Object Detection
File size: 13,709 Bytes
ffd09fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f04a422
 
 
 
 
ffd09fd
 
 
 
f04a422
 
 
 
 
ffd09fd
 
 
 
 
 
f04a422
 
 
 
ffd09fd
 
 
 
 
 
 
f04a422
 
 
 
ffd09fd
 
 
 
 
 
 
 
 
 
f04a422
 
 
 
 
 
 
 
 
 
ffd09fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
license: other
license_name: sla0044
license_link: >-
  https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/LICENSE.md
pipeline_tag: object-detection
---
# ST Yolo X quantized

## **Use case** : `Object detection`

# Model description


ST Yolo X is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
This is an optimized ST version of the well known yolo x, quantized in int8 format using tensorflow lite converter.

## Network information

| Network information     |  Value          |
|-------------------------|-----------------|
|  Framework              | TensorFlow Lite |
|  Quantization           | int8            |
|  Provenance             | TO DO  |
|  Paper                  | TO DO |



## Network inputs / outputs

For an image resolution of NxM and NC classes

| Input Shape | Description |
| ----- | ----------- |
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |

| Output Shape | Description |
| ----- | ----------- |
|  TO DO |


## Recommended Platforms

| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0  | []        | []          |
| STM32L4  | []        | []          |
| STM32U5  | []        | []          |
| STM32H7  | [x]       | []          |
| STM32MP1 | [x]       | []          |
| STM32MP2 | [x]       | [x]         |
| STM32N6  | [x]       | [x]         |


# Performances

## Metrics

Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.

### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model      | Dataset       | Format   | Resolution | Series    | Internal RAM (KiB) | External RAM (KiB)| Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 192x192x3  | STM32N6   |  324 | 0.0 | 1028.08  |  10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 256x256x3  | STM32N6   |   624 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person      | Int8     | 256x256x3  | STM32N6   |       971.62 | 0.0 | 2547.17 | 10.0.0  | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 320x320x3  | STM32N6   |     968.5 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 416x416x3  | STM32N6 | 2640.62 | 0.0 | 1027.89 | 10.0.0 | 2.0.0 |

### Reference **NPU**  inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model  | Dataset          | Format | Resolution  | Board            | Execution Engine | Inference time (ms) | Inf / sec   | STM32Cube.AI version  |  STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 192x192x3  | STM32N6570-DK   |   NPU/MCU      |   5.99   |   166.94 |       10.0.0        |     2.0.0   |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 256x256x3  | STM32N6570-DK   |   NPU/MCU      |   8.5  |   117.65  |       10.0.0        |     2.0.0   |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person      | Int8     | 256x256x3  | STM32N6570-DK   |   NPU/MCU      |     21.12     |    47.35    |       10.0.0        |     2.0.0   |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 320x320x3  | STM32N6570-DK   |   NPU/MCU      |       11.59    |   86.29   |       10.0.0        |     2.0.0   |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person      | Int8     | 416x416x3  | 
STM32N6570-DK   |   NPU/MCU      |    17.99  |    55.59   |       10.0.0        |     2.0.0   |

### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)

| Model             | Format | Resolution   | Series  | Activation RAM (KiB) | Runtime RAM (KiB)| Weights Flash (KiB)| Code Flash (KiB)| Total RAM   | Total Flash  | STM32Cube.AI version  |
|-------------------|--------|--------------|---------|----------------|-------------|---------------|------------|-------------|--------------|-----------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) |                                                        Int8 | 192x192x3 | STM32H7 | 162.42 | 64.05 | 891.18 |  166.19  |  226.47 | 1057.37 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) |                                                          Int8 | 256x256x3 | STM32H7 | 284.92 | 64.05 | 891.18  | 166.21 | 348.97 |  1057.39 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) |                                                                Int8   | 256x256x3    | STM32H7 |  463.9 |  83.8   |  2435.76 |  228.22| 547.7  |2663.98 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) |                                                            Int8   | 320x320x3    | STM32H7 | 442.42 |  64.05 |  891.18 |  166.25  |  506.47 | 1057.43 | 10.0.0 |


### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)


| Model            | Format | Resolution | Board            | Execution Engine | Frequency   | Inference time (ms) | STM32Cube.AI version  |
|------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8   | 192x192x3  | STM32H747I-DISCO | 1 CPU            | 400 MHz     | 352.4      | 10.0.0                 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8   | 256x256x3  | STM32H747I-DISCO | 1 CPU            | 400 MHz     | 619.92   | 10.0.0                 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8   | 256x256x3  | STM32H747I-DISCO | 1 CPU            | 400 MHz     |  1696.59   | 10.0.0                 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8   | 320x320x3  | STM32H747I-DISCO | 1 CPU            | 400 MHz     |  988.86  | 10.0.0                 |



### AP on COCO Person dataset


Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287

| Model | Format | Resolution |       AP       |
|-------|--------|------------|----------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3   |  45.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25.h5) | Float | 192x192x3   |  45.2 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3   | 53.6 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25.h5) | Float | 256x256x3   | 53.3 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3   | 58.6 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4.h5) | Float | 256x256x3   | 58.7 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3   | 57.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25.h5) | Float | 320x320x3   | 57.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | Int8 | 416x416x3   | 62.2 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25.h5) | Float | 416x416x3   | 62.5 % |

\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001

## Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)


# References


<a id="1">[1]</a>
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
@article{DBLP:journals/corr/LinMBHPRDZ14,
  author    = {Tsung{-}Yi Lin and
               Michael Maire and
               Serge J. Belongie and
               Lubomir D. Bourdev and
               Ross B. Girshick and
               James Hays and
               Pietro Perona and
               Deva Ramanan and
               Piotr Doll{'{a} }r and
               C. Lawrence Zitnick},
  title     = {Microsoft {COCO:} Common Objects in Context},
  journal   = {CoRR},
  volume    = {abs/1405.0312},
  year      = {2014},
  url       = {http://arxiv.org/abs/1405.0312},
  archivePrefix = {arXiv},
  eprint    = {1405.0312},
  timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}