File size: 13,709 Bytes
ffd09fd f04a422 ffd09fd f04a422 ffd09fd f04a422 ffd09fd f04a422 ffd09fd f04a422 ffd09fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/LICENSE.md
pipeline_tag: object-detection
---
# ST Yolo X quantized
## **Use case** : `Object detection`
# Model description
ST Yolo X is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
This is an optimized ST version of the well known yolo x, quantized in int8 format using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Provenance | TO DO |
| Paper | TO DO |
## Network inputs / outputs
For an image resolution of NxM and NC classes
| Input Shape | Description |
| ----- | ----------- |
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| TO DO |
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [x] | [] |
| STM32MP1 | [x] | [] |
| STM32MP2 | [x] | [x] |
| STM32N6 | [x] | [x] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB)| Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 324 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 624 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 971.62 | 0.0 | 2547.17 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 968.5 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 2640.62 | 0.0 | 1027.89 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 5.99 | 166.94 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 8.5 | 117.65 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.12 | 47.35 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 11.59 | 86.29 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 416x416x3 |
STM32N6570-DK | NPU/MCU | 17.99 | 55.59 | 10.0.0 | 2.0.0 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB)| Weights Flash (KiB)| Code Flash (KiB)| Total RAM | Total Flash | STM32Cube.AI version |
|-------------------|--------|--------------|---------|----------------|-------------|---------------|------------|-------------|--------------|-----------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 162.42 | 64.05 | 891.18 | 166.19 | 226.47 | 1057.37 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 284.92 | 64.05 | 891.18 | 166.21 | 348.97 | 1057.39 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 463.9 | 83.8 | 2435.76 | 228.22| 547.7 |2663.98 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | STM32H7 | 442.42 | 64.05 | 891.18 | 166.25 | 506.47 | 1057.43 | 10.0.0 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 352.4 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 619.92 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1696.59 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 988.86 | 10.0.0 |
### AP on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP |
|-------|--------|------------|----------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | 45.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25.h5) | Float | 192x192x3 | 45.2 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | 53.6 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25.h5) | Float | 256x256x3 | 53.3 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | 58.6 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4.h5) | Float | 256x256x3 | 58.7 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | 57.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25.h5) | Float | 320x320x3 | 57.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | Int8 | 416x416x3 | 62.2 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25.h5) | Float | 416x416x3 | 62.5 % |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
<a id="1">[1]</a>
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
|