Keypoint Detection
FBAGSTM commited on
Commit
4a00402
·
verified ·
1 Parent(s): fc2f7c3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -6
README.md CHANGED
@@ -1,6 +1,133 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32aimodelzoo/pose_estimation/yolov8n_pose/LICENSE.md
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: sla0044
4
+ license_link: >-
5
+ https://github.com/STMicroelectronics/stm32aimodelzoo/pose_estimation/yolov8n_pose/LICENSE.md
6
+ pipeline_tag: keypoint-detection
7
+ ---
8
+ # Yolov8n_pose quantized
9
+
10
+ ## **Use case** : `Pose estimation`
11
+
12
+ # Model description
13
+
14
+ Yolov8n_pose is a lightweight and efficient model designed for multi pose estimation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov8n_pose indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems.
15
+
16
+ Yolov8n_pose is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter.
17
+
18
+ ## Network information
19
+
20
+
21
+ | Network information | Value |
22
+ |-------------------------|-----------------|
23
+ | Framework | TensorFlow Lite |
24
+ | Quantization | int8 |
25
+ | Provenance | https://docs.ultralytics.com/tasks/pose/ |
26
+
27
+
28
+ ## Networks inputs / outputs
29
+
30
+ With an image resolution of NxM with K keypoints to detect :
31
+
32
+ | Input Shape | Description |
33
+ | ----- | ----------- |
34
+ | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
35
+
36
+ | Output Shape | Description |
37
+ | ----- | ----------- |
38
+ | (1, Kx3, F) | FLOAT values Where F = (N/8)^2 + (N/16)^2 + (N/32)^2 is the 3 concatenated feature maps and K is the number of keypoints|
39
+
40
+
41
+ ## Recommended Platforms
42
+
43
+
44
+ | Platform | Supported | Recommended |
45
+ |----------|-----------|-------------|
46
+ | STM32L0 | [] | [] |
47
+ | STM32L4 | [] | [] |
48
+ | STM32U5 | [] | [] |
49
+ | STM32H7 | [] | [] |
50
+ | STM32MP1 | [] | [] |
51
+ | STM32MP2 | [x] | [x] |
52
+ | STM32N6 | [x] | [x] |
53
+
54
+
55
+ # Performances
56
+
57
+ ## Metrics
58
+
59
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
60
+
61
+ ### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
62
+ |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
63
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
64
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 477.56 | 0.0 | 3247.89 | 10.0.0 | 2.0.0 |
65
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1135 | 0.0 | 3265.22 | 10.0.0 | 2.0.0 |
66
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 2264.27 | 0.0 | 3263.72 | 10.0.0 | 2.0.0 |
67
+
68
+ ### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
69
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
70
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
71
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 24.46 | 40.89 | 10.0.0 | 2.0.0 |
72
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 35.79 | 27.95 | 10.0.0 | 2.0.0 |
73
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 51.35 | 19.48 | 10.0.0 | 2.0.0 |
74
+
75
+
76
+ ### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
77
+ Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
78
+ |-----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
79
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 102.8 ms | 11.70 | 88.30 |0 | v5.0.0 | OpenVX |
80
+ | [YOLOv8n pose per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.57 ms | 86.79 | 13.21 |0 | v5.0.0 | OpenVX |
81
+
82
+ ** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
83
+
84
+ ### AP0.5 on COCO Person dataset
85
+
86
+
87
+ Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
88
+
89
+
90
+ | Model | Format | Resolution | AP0.5* |
91
+ |-------|--------|------------|----------------|
92
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | Int8 | 192x192x3 | 41.05 % |
93
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | 51.12 % |
94
+ | [YOLOv8n pose per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | 48.43 % |
95
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | Int8 | 320x320x3 | 55.55 % |
96
+
97
+ \* NMS_THRESH = 0.1, SCORE_THRESH = 0.001
98
+
99
+ ## Integration in a simple example and other services support:
100
+
101
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services).
102
+ The models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/).
103
+
104
+ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/pose/#train) to retrain the models.
105
+
106
+
107
+ # References
108
+
109
+ <a id="1">[1]</a>
110
+ “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
111
+ @article{DBLP:journals/corr/LinMBHPRDZ14,
112
+ author = {Tsung{-}Yi Lin and
113
+ Michael Maire and
114
+ Serge J. Belongie and
115
+ Lubomir D. Bourdev and
116
+ Ross B. Girshick and
117
+ James Hays and
118
+ Pietro Perona and
119
+ Deva Ramanan and
120
+ Piotr Doll{'{a} }r and
121
+ C. Lawrence Zitnick},
122
+ title = {Microsoft {COCO:} Common Objects in Context},
123
+ journal = {CoRR},
124
+ volume = {abs/1405.0312},
125
+ year = {2014},
126
+ url = {http://arxiv.org/abs/1405.0312},
127
+ archivePrefix = {arXiv},
128
+ eprint = {1405.0312},
129
+ timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
130
+ biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
131
+ bibsource = {dblp computer science bibliography, https://dblp.org}
132
+ }
133
+