SYZhang0805
commited on
Commit
•
262b794
1
Parent(s):
03943ba
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: diffusers
|
4 |
+
tags:
|
5 |
+
- text-to-image
|
6 |
+
- stable-diffusion
|
7 |
+
- diffusion distillation
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63943c882b9483beb473ec25/f8ws6nGK2ZkPEiizha2t9.png)
|
12 |
+
|
13 |
+
> [**Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation**](https://github.com/SYZhang0805/DisBack),
|
14 |
+
> *[Shengyuan Zhang](https://github.com/SYZhang0805)<sup>1</sup>, [Ling Yang](https://github.com/YangLing0818)<sup>2</sup>, [Zejian Li*](https://zejianli.github.io/)<sup>1</sup>, An Zhao<sup>1</sup>, Chenye Meng<sup>1</sup>, Changyuan Yang<sup>3</sup>, Guang Yang<sup>3</sup>, Zhiyuan Yang<sup>3</sup>, [Lingyun Sun](https://person.zju.edu.cn/sly)<sup>1</sup>*
|
15 |
+
> <sup>1</sup>Zhejiang University <sup>2</sup>Peking University <sup>3</sup>Alibaba Group*
|
16 |
+
>
|
17 |
+
## Contact
|
18 |
+
|
19 |
+
Feel free to contact us if you have any questions about the paper!
|
20 |
+
|
21 |
+
Shengyuan Zhang [[email protected]](mailto:[email protected])
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
For one-step text-to-image generation, DisBack can use the standard diffuser pipeline:
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
|
32 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
33 |
+
repo_name = "SYZhang0805/DisBack"
|
34 |
+
ckpt_name = "SDXL_DisBack.bin"
|
35 |
+
|
36 |
+
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
|
37 |
+
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name), map_location="cuda"))
|
38 |
+
|
39 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
|
40 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
41 |
+
prompt="A photo of a dog."
|
42 |
+
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[399], height=1024, width=1024).images[0]
|
43 |
+
image.save('output.png', 'PNG')
|
44 |
+
```
|
45 |
+
|
46 |
+
For more details, please refer to our [github repository](https://github.com/SYZhang0805/DisBack)
|
47 |
+
|
48 |
+
## License
|
49 |
+
|
50 |
+
DisBack is released under [MIT license](https://choosealicense.com/licenses/mit/)
|
51 |
+
|
52 |
+
## Citation
|
53 |
+
If you find our paper useful or relevant to your research, please kindly cite our papers:
|
54 |
+
```bib
|
55 |
+
@article{zhang2024distributionbacktrackingbuildsfaster,
|
56 |
+
title={Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation},
|
57 |
+
author={Shengyuan Zhang and Ling Yang and Zejian Li and An Zhao and Chenye Meng and Changyuan Yang and Guang Yang and Zhiyuan Yang and Lingyun Sun},
|
58 |
+
journal={arXiv 2408.15991},
|
59 |
+
year={2024}
|
60 |
+
}
|
61 |
+
```
|
62 |
+
|
63 |
+
## Credits
|
64 |
+
|
65 |
+
DisBack is highly built on the following amazing open-source projects:
|
66 |
+
|
67 |
+
[DMD2](https://tianweiy.github.io/dmd2/): Improved Distribution Matching Distillation for Fast Image Synthesis
|
68 |
+
|
69 |
+
[Diff-Instruct](https://github.com/pkulwj1994/diff_instruct/tree/main): Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models
|
70 |
+
|
71 |
+
[ScoreGAN](https://github.com/White-Link/gpm): Unifying GANs and Score-Based Diffusion as Generative Particle Models
|
72 |
+
|
73 |
+
Thanks to the maintainers of these projects for their contribution to this project!
|