--- license: mit --- # Model Information 🧬 **License:** MIT ### 🔬 Base Model: [westlake-repl/SaProt_35M_AF2](https://huggingface.co/westlake-repl/SaProt_35M_AF2) ### 🧩 Task Type: Protein-level regression ### 📊 Dataset: [DATASET-CAPE-RhlA-seqlabel](https://huggingface.co/datasets/SaProtHub/DATASET-CAPE-RhlA-seqlabel) - **protein:** Contains mutation data including the RhlA enzyme sequence and corresponding performance metrics. - **Label:** The experimentally tested fitness score, representing the scaled mutation effect for each mutant. - **Source:** Label derived from [CAPE](https://doi.org/10.1021/acssynbio.4c00588) ### 🔡 Model Input Type: Amino acid sequence; label in RhlA ### 📈 Performance (the best on test set): **Spearman's ρ:** 0.862 --- ## LoRA Configuration ⚙️ - **r:** 8 - **LoRA dropout:** 0.1 - **LoRA alpha:** 8 - **Modules to save:** `["regression"]` ## Training Configuration 🎛️ - **Optimizer:** - **Class:** AdamW - **Betas:** (0.9, 0.98) - **Weight decay:** 0.01 - **Learning rate:** 5e-5 - **Epochs:** 5 - **Batch size:** Adaptive