--- base_model: westlake-repl/SaProt_650M_AF2 library_name: peft --- # Model Card for Model ID This model is used to predict signal peptides on each site of amino acid sequences. ### Task type Residue level clssification ### Dataset description The dataset is from [SignalP 6.0 predicts all five types of signal peptides using protein language models](https://www.nature.com/articles/s41587-021-01156-3). This dataset contains 7 classes: S (0): Sec/SPI signal peptide | T (1): Tat/SPI or Tat/SPII signal peptide | L (2): Sec/SPII signal peptide | P (3): Sec/SPIII signal peptide | I (4): cytoplasm | M (5): transmembrane | O (6): extracellular ### Model input type Amino acid sequence ### Performance test_acc: 0.96 ### LoRA config lora_dropout: 0.0 lora_alpha: 16 target_modules: ["query", "key", "value", "intermediate.dense", "output.dense"] modules_to_save: ["classifier"] ### Training config class: AdamW betas: (0.9, 0.98) weight_decay: 0.01 learning rate: 1e-4 epoch: 10 batch size: 100 precision: 16-mixed