File size: 979 Bytes
56af7a9 9fce3a4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 fc50be4 56af7a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
base_model: westlake-repl/SaProt_650M_AF2
library_name: peft
---
# Base model: [westlake-repl/SaProt_650M_AF2](https://huggingface.co/westlake-repl/SaProt_650M_AF2)
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This model is used to predict solubility of a amino acid sequence.
### Task type
protein level classification
### Dataset description
The dataset is from [DeepSol: a deep learning framework for sequence-based protein solubility prediction](https://doi.org/10.1093/bioinformatics/bty166).
Binary label, 1 means soluble, 0 means insoluble.
### Model input type
Amino acid sequence
### Performance
test_acc: 0.74
### LoRA config
lora_dropout: 0.0
lora_alpha: 16
target_modules: ["query", "key", "value", "intermediate.dense", "output.dense"]
modules_to_save: ["classifier"]
### Training config
class: AdamW
betas: (0.9, 0.98)
weight_decay: 0.01
learning rate: 1e-4
epoch: 1
batch size: 100
precision: 16-mixed
|