File size: 842 Bytes
3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 7279ccf 3ef6882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import pandas as pd
import os
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers.optimization import Adafactor
import time
import warnings
warnings.filterwarnings('ignore')
tokenizer = T5Tokenizer.from_pretrained('Sachinkelenjaguri/sa_T5_Table_to_text')
model = T5ForConditionalGeneration.from_pretrained('Sachinkelenjaguri/sa_T5_Table_to_text', return_dict=True)
def generate(text):
model.eval()
input_ids = tokenizer.encode("WebNLG:{} </s>".format(text), return_tensors="pt") # Batch size 1
s = time.time()
outputs = model.generate(input_ids)
gen_text=tokenizer.decode(outputs[0]).replace('<pad>','').replace('</s>','')
elapsed = time.time() - s
print('Generated in {} seconds'.format(str(elapsed)[:4]))
return gen_text
generate(' Russia | leader | Putin') |