davide221 commited on
Commit
e138556
β€’
1 Parent(s): 8947e23

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ ---
5
+ # πŸ₯· Safurai-Csharp-34B
6
+
7
+ πŸ“ [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
8
+
9
+ πŸ“„ [Paper](https://www.safurai.com/)
10
+
11
+ <center><img src="https://i.imgur.com/REPqbYM.png" width="300"></center>
12
+
13
+ This is a [`codellama/CodeLlama-34b-hf`](https://huggingface.co/codellama/CodeLlama-34b-hf) model fine-tuned using QLoRA (4-bit precision) on 13B tokens of csharp evolved Q&A
14
+
15
+ We obtained <b>state-of-the-art performance</b> on the MultiPL-E code LLM benchmark for csharp, reaching 56% at pass@1 with n=5.
16
+
17
+ ## πŸ’» Quantization
18
+
19
+ These are GGUF quantized versions of Safurai-Csharp-34B, it has been made by using the amazing [`llama.cpp`](https://github.com/ggerganov/llama.cpp) library.
20
+
21
+ ## πŸ”§ Training
22
+
23
+ It was trained on 2 x NVIDIA A100 PCIe 80GB in 7h 40m with the following configuration file:
24
+
25
+ ```yaml
26
+ base_model: codellama/CodeLlama-34b-hf
27
+ base_model_config: codellama/CodeLlama-34b-hf
28
+ model_type: LlamaForCausalLM
29
+ tokenizer_type: CodeLlamaTokenizer
30
+ is_llama_derived_model: true
31
+ hub_model_id: "Safurai/Evol-csharp-v1"
32
+
33
+ load_in_8bit: false
34
+ load_in_4bit: true
35
+ strict: false
36
+
37
+ datasets:
38
+ - path: Safurai/EvolInstruct-csharp-16k-13B-Alpaca
39
+ type: alpaca
40
+ dataset_prepared_path: last_run_prepared
41
+ val_set_size: 0.01
42
+ output_dir: ./qlora-out
43
+
44
+ sequence_len: 4096
45
+ sample_packing: true
46
+ pad_to_sequence_len: true
47
+
48
+ adapter: lora
49
+ lora_model_dir:
50
+ lora_r: 32
51
+ lora_alpha: 16
52
+ lora_dropout: 0.05
53
+ lora_target_linear: true
54
+ lora_fan_in_fan_out:
55
+
56
+ wandb_project: codellama-csharp
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_run_id:
60
+ wandb_log_model:
61
+
62
+ gradient_accumulation_steps: 4
63
+ micro_batch_size: 2
64
+ num_epochs: 3
65
+ optimizer: adamw_bnb_8bit
66
+ lr_scheduler: cosine
67
+ learning_rate: 0.0003
68
+
69
+ train_on_inputs: false
70
+ group_by_length: false
71
+ bf16: true
72
+ fp16: false
73
+ tf32: false
74
+
75
+ gradient_checkpointing: true
76
+ early_stopping_patience:
77
+ resume_from_checkpoint:
78
+ local_rank:
79
+ logging_steps: 1
80
+ xformers_attention:
81
+ flash_attention: true
82
+
83
+ warmup_steps: 40
84
+ eval_steps: 40
85
+ save_steps:
86
+ debug:
87
+ deepspeed:
88
+ weight_decay: 0.0
89
+ fsdp:
90
+ fsdp_config:
91
+ special_tokens:
92
+ bos_token: "<s>"
93
+ eos_token: "</s>"
94
+ unk_token: "<unk>"
95
+ ```
96
+
97
+ ## πŸ“‰ Training loss curve:
98
+
99
+ ![](https://i.imgur.com/rp1htuf.png)
100
+
101
+ ## πŸ“Š Dataset composition:
102
+
103
+ ![](https://i.imgur.com/kTNXgGX.png)
104
+
105
+
106
+ ## πŸ’» Usage for GGUF
107
+
108
+ ``` python
109
+ import os
110
+
111
+ model_list = [file for file in os.listdir(MODEL_NAME) if GGML_VERSION in file]
112
+
113
+ prompt = input("Enter your prompt: ")
114
+ chosen_method = input("Please specify the quantization method to run the model (options: " + ", ".join(model_list) + "): ")
115
+
116
+ # Verify the chosen method is in the list
117
+ if chosen_method not in model_list:
118
+ print("Invalid method chosen!")
119
+ else:
120
+ qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.{method}.bin"
121
+ !./llama.cpp/main -m {qtype} -n 128 --color -ngl 35 -p "{prompt}"
122
+ ```
123
+
124
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)