davide221 commited on
Commit
89a586f
·
1 Parent(s): 6b3048b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - mlabonne/Evol-Instruct-Python-1k
5
+ pipeline_tag: text-generation
6
+ ---
7
+ # 🦙💻 EvolCodeLlama-7b
8
+
9
+ 📝 [Article](https://medium.com/@mlabonne/a-beginners-guide-to-llm-fine-tuning-4bae7d4da672)
10
+
11
+ <center><img src="https://i.imgur.com/5m7OJQU.png" width="300"></center>
12
+
13
+ This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k).
14
+
15
+ ## 🔧 Training
16
+
17
+ It was trained on an RTX 3090 in 1h 11m 44s with the following configuration file:
18
+
19
+ ```yaml
20
+ base_model: codellama/CodeLlama-7b-hf
21
+ base_model_config: codellama/CodeLlama-7b-hf
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_llama_derived_model: true
25
+ hub_model_id: EvolCodeLlama-7b
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: true
29
+ strict: false
30
+
31
+ datasets:
32
+ - path: mlabonne/Evol-Instruct-Python-1k
33
+ type: alpaca
34
+ dataset_prepared_path: last_run_prepared
35
+ val_set_size: 0.02
36
+ output_dir: ./qlora-out
37
+
38
+ adapter: qlora
39
+ lora_model_dir:
40
+
41
+ sequence_len: 2048
42
+ sample_packing: true
43
+
44
+ lora_r: 32
45
+ lora_alpha: 16
46
+ lora_dropout: 0.05
47
+ lora_target_modules:
48
+ lora_target_linear: true
49
+ lora_fan_in_fan_out:
50
+
51
+ wandb_project: axolotl
52
+ wandb_entity:
53
+ wandb_watch:
54
+ wandb_run_id:
55
+ wandb_log_model:
56
+
57
+ gradient_accumulation_steps: 1
58
+ micro_batch_size: 10
59
+ num_epochs: 3
60
+ optimizer: paged_adamw_32bit
61
+ lr_scheduler: cosine
62
+ learning_rate: 0.0002
63
+
64
+ train_on_inputs: false
65
+ group_by_length: false
66
+ bf16: true
67
+ fp16: false
68
+ tf32: false
69
+
70
+ gradient_checkpointing: true
71
+ early_stopping_patience:
72
+ resume_from_checkpoint:
73
+ local_rank:
74
+ logging_steps: 1
75
+ xformers_attention:
76
+ flash_attention: true
77
+
78
+ warmup_steps: 100
79
+ eval_steps: 0.01
80
+ save_strategy: epoch
81
+ save_steps:
82
+ debug:
83
+ deepspeed:
84
+ weight_decay: 0.0
85
+ fsdp:
86
+ fsdp_config:
87
+ special_tokens:
88
+ bos_token: "<s>"
89
+ eos_token: "</s>"
90
+ unk_token: "<unk>"
91
+ ```
92
+
93
+ Here are the loss curves:
94
+
95
+ ![](https://i.imgur.com/zrBq01N.png)
96
+
97
+ It is mainly designed for educational purposes, not for inference.
98
+
99
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
100
+
101
+ ## 💻 Usage
102
+
103
+ ``` python
104
+ # pip install transformers accelerate
105
+
106
+ from transformers import AutoTokenizer
107
+ import transformers
108
+ import torch
109
+
110
+ model = "mlabonne/EvolCodeLlama-7b"
111
+ prompt = "Your prompt"
112
+
113
+ tokenizer = AutoTokenizer.from_pretrained(model)
114
+ pipeline = transformers.pipeline(
115
+ "text-generation",
116
+ model=model,
117
+ torch_dtype=torch.float16,
118
+ device_map="auto",
119
+ )
120
+
121
+ sequences = pipeline(
122
+ f'{prompt}',
123
+ do_sample=True,
124
+ top_k=10,
125
+ num_return_sequences=1,
126
+ eos_token_id=tokenizer.eos_token_id,
127
+ max_length=200,
128
+ )
129
+ for seq in sequences:
130
+ print(f"Result: {seq['generated_text']}")
131
+ ```