Sagicc commited on
Commit
63f488f
·
1 Parent(s): d05061a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md CHANGED
@@ -1,3 +1,90 @@
1
  ---
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - sr
4
  license: apache-2.0
5
+ base_model: openai/whisper-medium
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_13_0
10
+ - google/fleurs
11
+ - Sagicc/audio-lmb-ds
12
+ metrics:
13
+ - wer
14
+ model-index:
15
+ - name: Whisper Medium cmb
16
+ results:
17
+ - task:
18
+ name: Automatic Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice 13
22
+ type: mozilla-foundation/common_voice_13_0
23
+ config: sr
24
+ split: test
25
+ args: sr
26
+ metrics:
27
+ - name: Wer
28
+ type: wer
29
+ value: 0.0658123370981755
30
  ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # Whisper Medium sr v2
36
+
37
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium).
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.2216
40
+ - Wer Ortho: 0.1663
41
+ - Wer: 0.0738
42
+
43
+ ## Model description
44
+
45
+ This is a fine tunned on merged datasets Common Voice 16 + Fleurs + [Juzne vesti (South news)](http://hdl.handle.net/11356/1679) + [LBM](https://huggingface.co/datasets/Sagicc/audio-lmb-ds)
46
+
47
+ Rupnik, Peter and Ljubešić, Nikola, 2022,\
48
+ ASR training dataset for Serbian JuzneVesti-SR v1.0, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,\
49
+ http://hdl.handle.net/11356/1679.
50
+
51
+ ## Intended uses & limitations
52
+
53
+ More information needed
54
+
55
+ ## Training and evaluation data
56
+
57
+ More information needed
58
+
59
+ ## Training procedure
60
+
61
+ ### Training hyperparameters
62
+
63
+ The following hyperparameters were used during training:
64
+ - learning_rate: 1e-05
65
+ - train_batch_size: 4
66
+ - eval_batch_size: 8
67
+ - seed: 42
68
+ - gradient_accumulation_steps: 4
69
+ - total_train_batch_size: 16
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - lr_scheduler_warmup_steps: 50
73
+ - training_steps: 1500
74
+ - mixed_precision_training: Native AMP
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
80
+ | 0.3634 | 0.40 | 500 | 0.1619 | 0.1953 | 0.0921 |
81
+ | 0.3185 | 0.81 | 1000 | 0.1423 | 0.175 | 0.0800 |
82
+ | 0.2216 | 1.21 | 1500 | 0.137 | 0.1663 | 0.0738 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.35.2
88
+ - Pytorch 2.0.1+cu117
89
+ - Datasets 2.14.5
90
+ - Tokenizers 0.14.1