Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,90 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- sr
|
4 |
license: apache-2.0
|
5 |
+
base_model: openai/whisper-medium
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_13_0
|
10 |
+
- google/fleurs
|
11 |
+
- Sagicc/audio-lmb-ds
|
12 |
+
metrics:
|
13 |
+
- wer
|
14 |
+
model-index:
|
15 |
+
- name: Whisper Medium cmb
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Automatic Speech Recognition
|
19 |
+
type: automatic-speech-recognition
|
20 |
+
dataset:
|
21 |
+
name: Common Voice 13
|
22 |
+
type: mozilla-foundation/common_voice_13_0
|
23 |
+
config: sr
|
24 |
+
split: test
|
25 |
+
args: sr
|
26 |
+
metrics:
|
27 |
+
- name: Wer
|
28 |
+
type: wer
|
29 |
+
value: 0.0658123370981755
|
30 |
---
|
31 |
+
|
32 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
33 |
+
should probably proofread and complete it, then remove this comment. -->
|
34 |
+
|
35 |
+
# Whisper Medium sr v2
|
36 |
+
|
37 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium).
|
38 |
+
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.2216
|
40 |
+
- Wer Ortho: 0.1663
|
41 |
+
- Wer: 0.0738
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
This is a fine tunned on merged datasets Common Voice 16 + Fleurs + [Juzne vesti (South news)](http://hdl.handle.net/11356/1679) + [LBM](https://huggingface.co/datasets/Sagicc/audio-lmb-ds)
|
46 |
+
|
47 |
+
Rupnik, Peter and Ljubešić, Nikola, 2022,\
|
48 |
+
ASR training dataset for Serbian JuzneVesti-SR v1.0, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,\
|
49 |
+
http://hdl.handle.net/11356/1679.
|
50 |
+
|
51 |
+
## Intended uses & limitations
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training and evaluation data
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training procedure
|
60 |
+
|
61 |
+
### Training hyperparameters
|
62 |
+
|
63 |
+
The following hyperparameters were used during training:
|
64 |
+
- learning_rate: 1e-05
|
65 |
+
- train_batch_size: 4
|
66 |
+
- eval_batch_size: 8
|
67 |
+
- seed: 42
|
68 |
+
- gradient_accumulation_steps: 4
|
69 |
+
- total_train_batch_size: 16
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- lr_scheduler_warmup_steps: 50
|
73 |
+
- training_steps: 1500
|
74 |
+
- mixed_precision_training: Native AMP
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
80 |
+
| 0.3634 | 0.40 | 500 | 0.1619 | 0.1953 | 0.0921 |
|
81 |
+
| 0.3185 | 0.81 | 1000 | 0.1423 | 0.175 | 0.0800 |
|
82 |
+
| 0.2216 | 1.21 | 1500 | 0.137 | 0.1663 | 0.0738 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.35.2
|
88 |
+
- Pytorch 2.0.1+cu117
|
89 |
+
- Datasets 2.14.5
|
90 |
+
- Tokenizers 0.14.1
|