File size: 9,247 Bytes
2a2d52d
 
78d1fc9
 
 
 
 
 
 
 
2a2d52d
78d1fc9
 
 
 
 
 
 
 
0c88f09
 
 
 
 
 
 
 
78d1fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c88f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d1fc9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1017
- Answer: {'precision': 0.40439158279963405, 'recall': 0.546353522867738, 'f1': 0.46477392218717145, 'number': 809}
- Header: {'precision': 0.3368421052631579, 'recall': 0.2689075630252101, 'f1': 0.29906542056074764, 'number': 119}
- Question: {'precision': 0.5619128949615713, 'recall': 0.6178403755868545, 'f1': 0.5885509838998211, 'number': 1065}
- Overall Precision: 0.4799
- Overall Recall: 0.5680
- Overall F1: 0.5202
- Overall Accuracy: 0.6339

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                     | Header                                                                                                      | Question                                                                                                   | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.3745        | 1.0   | 5    | 1.1446          | {'precision': 0.24631396357328708, 'recall': 0.3510506798516687, 'f1': 0.28950050968399593, 'number': 809} | {'precision': 0.20930232558139536, 'recall': 0.226890756302521, 'f1': 0.21774193548387097, 'number': 119}   | {'precision': 0.4135151890886547, 'recall': 0.6262910798122066, 'f1': 0.4981329350261389, 'number': 1065}  | 0.3378            | 0.4907         | 0.4002     | 0.5475           |
| 1.0195        | 2.0   | 10   | 1.0518          | {'precision': 0.29006968641114983, 'recall': 0.411619283065513, 'f1': 0.340316811446091, 'number': 809}    | {'precision': 0.2815533980582524, 'recall': 0.24369747899159663, 'f1': 0.26126126126126126, 'number': 119}  | {'precision': 0.42618741976893454, 'recall': 0.6234741784037559, 'f1': 0.5062905070529927, 'number': 1065} | 0.3653            | 0.5148         | 0.4273     | 0.5967           |
| 0.8996        | 3.0   | 15   | 1.0952          | {'precision': 0.3147887323943662, 'recall': 0.5525339925834364, 'f1': 0.4010767160161508, 'number': 809}   | {'precision': 0.25301204819277107, 'recall': 0.17647058823529413, 'f1': 0.20792079207920794, 'number': 119} | {'precision': 0.4714285714285714, 'recall': 0.5267605633802817, 'f1': 0.4975609756097561, 'number': 1065}  | 0.3821            | 0.5163         | 0.4392     | 0.5831           |
| 0.8294        | 4.0   | 20   | 1.0418          | {'precision': 0.3429571303587052, 'recall': 0.484548825710754, 'f1': 0.4016393442622951, 'number': 809}    | {'precision': 0.32, 'recall': 0.20168067226890757, 'f1': 0.24742268041237112, 'number': 119}                | {'precision': 0.49588815789473684, 'recall': 0.5661971830985916, 'f1': 0.5287154756685665, 'number': 1065} | 0.4187            | 0.5113         | 0.4604     | 0.6110           |
| 0.773         | 5.0   | 25   | 1.0412          | {'precision': 0.34150772025431425, 'recall': 0.4647713226205192, 'f1': 0.393717277486911, 'number': 809}   | {'precision': 0.2857142857142857, 'recall': 0.20168067226890757, 'f1': 0.23645320197044337, 'number': 119}  | {'precision': 0.4541223404255319, 'recall': 0.6413145539906103, 'f1': 0.5317244063838069, 'number': 1065}  | 0.4028            | 0.5434         | 0.4626     | 0.6114           |
| 0.731         | 6.0   | 30   | 1.0832          | {'precision': 0.352991452991453, 'recall': 0.5105067985166872, 'f1': 0.4173825164224356, 'number': 809}    | {'precision': 0.2708333333333333, 'recall': 0.2184873949579832, 'f1': 0.24186046511627907, 'number': 119}   | {'precision': 0.5029686174724343, 'recall': 0.5568075117370892, 'f1': 0.5285204991087344, 'number': 1065}  | 0.4221            | 0.5178         | 0.4651     | 0.6014           |
| 0.6884        | 7.0   | 35   | 1.1304          | {'precision': 0.3588709677419355, 'recall': 0.5500618046971569, 'f1': 0.4343582235236701, 'number': 809}   | {'precision': 0.36619718309859156, 'recall': 0.2184873949579832, 'f1': 0.2736842105263158, 'number': 119}   | {'precision': 0.5510204081632653, 'recall': 0.5577464788732395, 'f1': 0.5543630424638357, 'number': 1065}  | 0.4458            | 0.5344         | 0.4861     | 0.6078           |
| 0.6731        | 8.0   | 40   | 1.0667          | {'precision': 0.3651096282173499, 'recall': 0.47342398022249693, 'f1': 0.41227125941872983, 'number': 809} | {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119}                 | {'precision': 0.49964912280701756, 'recall': 0.6685446009389672, 'f1': 0.5718875502008032, 'number': 1065} | 0.4367            | 0.5640         | 0.4922     | 0.6205           |
| 0.6441        | 9.0   | 45   | 1.0893          | {'precision': 0.3948576675849403, 'recall': 0.5315203955500618, 'f1': 0.45310853530031614, 'number': 809}  | {'precision': 0.3238095238095238, 'recall': 0.2857142857142857, 'f1': 0.30357142857142855, 'number': 119}   | {'precision': 0.5439367311072056, 'recall': 0.5812206572769953, 'f1': 0.5619609623241035, 'number': 1065}  | 0.4644            | 0.5434         | 0.5008     | 0.6241           |
| 0.6139        | 10.0  | 50   | 1.0987          | {'precision': 0.37037037037037035, 'recall': 0.5562422744128553, 'f1': 0.44466403162055335, 'number': 809} | {'precision': 0.313953488372093, 'recall': 0.226890756302521, 'f1': 0.2634146341463415, 'number': 119}      | {'precision': 0.533678756476684, 'recall': 0.5802816901408451, 'f1': 0.5560053981106613, 'number': 1065}   | 0.4453            | 0.5494         | 0.4919     | 0.6253           |
| 0.6007        | 11.0  | 55   | 1.0803          | {'precision': 0.40096618357487923, 'recall': 0.5129789864029666, 'f1': 0.45010845986984815, 'number': 809} | {'precision': 0.29591836734693877, 'recall': 0.24369747899159663, 'f1': 0.26728110599078336, 'number': 119} | {'precision': 0.5409054805401112, 'recall': 0.6394366197183099, 'f1': 0.5860585197934596, 'number': 1065}  | 0.4703            | 0.5645         | 0.5131     | 0.6317           |
| 0.5985        | 12.0  | 60   | 1.0997          | {'precision': 0.4080846968238691, 'recall': 0.5241038318912238, 'f1': 0.45887445887445893, 'number': 809}  | {'precision': 0.31683168316831684, 'recall': 0.2689075630252101, 'f1': 0.29090909090909095, 'number': 119}  | {'precision': 0.5536303630363036, 'recall': 0.6300469483568075, 'f1': 0.5893719806763285, 'number': 1065}  | 0.4792            | 0.5655         | 0.5188     | 0.6323           |
| 0.5828        | 13.0  | 65   | 1.0996          | {'precision': 0.40275229357798165, 'recall': 0.5426452410383189, 'f1': 0.46234860452869925, 'number': 809} | {'precision': 0.33695652173913043, 'recall': 0.2605042016806723, 'f1': 0.29383886255924174, 'number': 119}  | {'precision': 0.5685936151855048, 'recall': 0.6187793427230047, 'f1': 0.5926258992805755, 'number': 1065}  | 0.4823            | 0.5665         | 0.5210     | 0.6345           |
| 0.5656        | 14.0  | 70   | 1.1065          | {'precision': 0.40542986425339367, 'recall': 0.553770086526576, 'f1': 0.46812957157784746, 'number': 809}  | {'precision': 0.32967032967032966, 'recall': 0.25210084033613445, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.5730735163861824, 'recall': 0.6075117370892019, 'f1': 0.5897903372835004, 'number': 1065}  | 0.4839            | 0.5645         | 0.5211     | 0.6338           |
| 0.5625        | 15.0  | 75   | 1.1017          | {'precision': 0.40439158279963405, 'recall': 0.546353522867738, 'f1': 0.46477392218717145, 'number': 809}  | {'precision': 0.3368421052631579, 'recall': 0.2689075630252101, 'f1': 0.29906542056074764, 'number': 119}   | {'precision': 0.5619128949615713, 'recall': 0.6178403755868545, 'f1': 0.5885509838998211, 'number': 1065}  | 0.4799            | 0.5680         | 0.5202     | 0.6339           |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3