End of training
Browse files- README.md +106 -196
- model.safetensors +1 -1
- runs/Apr05_22-50-07_GPU/events.out.tfevents.1712337973.GPU.145321.0 +2 -2
README.md
CHANGED
@@ -1,199 +1,109 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/w2v-bert-2.0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- common_voice_16_0
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: w2v-bert-2.0-bangala-gpu-CV16.0_v2
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: common_voice_16_0
|
18 |
+
type: common_voice_16_0
|
19 |
+
config: bn
|
20 |
+
split: test
|
21 |
+
args: bn
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.4811011116993118
|
26 |
---
|
27 |
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# w2v-bert-2.0-bangala-gpu-CV16.0_v2
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4490
|
36 |
+
- Wer: 0.4811
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 4.42184e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 500
|
64 |
+
- num_epochs: 10
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
71 |
+
| 3.5221 | 0.31 | 300 | 0.5900 | 0.6271 |
|
72 |
+
| 1.2024 | 0.63 | 600 | 0.4088 | 0.4071 |
|
73 |
+
| 0.9149 | 0.94 | 900 | 0.3200 | 0.3270 |
|
74 |
+
| 0.8124 | 1.26 | 1200 | 0.2965 | 0.3080 |
|
75 |
+
| 0.7028 | 1.57 | 1500 | 0.2759 | 0.2884 |
|
76 |
+
| 0.6301 | 1.89 | 1800 | 0.2435 | 0.2671 |
|
77 |
+
| 0.6147 | 2.2 | 2100 | 0.2335 | 0.2477 |
|
78 |
+
| 0.6304 | 2.52 | 2400 | 0.2248 | 0.2458 |
|
79 |
+
| 0.5921 | 2.83 | 2700 | 0.2326 | 0.2441 |
|
80 |
+
| 0.495 | 3.15 | 3000 | 0.2180 | 0.2378 |
|
81 |
+
| 0.4987 | 3.46 | 3300 | 0.2139 | 0.2227 |
|
82 |
+
| 0.5669 | 3.78 | 3600 | 0.2097 | 0.2236 |
|
83 |
+
| 0.5904 | 4.09 | 3900 | 0.2038 | 0.2178 |
|
84 |
+
| 0.6016 | 4.41 | 4200 | 0.2091 | 0.2131 |
|
85 |
+
| 0.5325 | 4.72 | 4500 | 0.2064 | 0.2147 |
|
86 |
+
| 0.5271 | 5.04 | 4800 | 0.2002 | 0.2159 |
|
87 |
+
| 0.5229 | 5.35 | 5100 | 0.2069 | 0.2209 |
|
88 |
+
| 0.5843 | 5.67 | 5400 | 0.2090 | 0.2202 |
|
89 |
+
| 0.5477 | 5.98 | 5700 | 0.2085 | 0.2175 |
|
90 |
+
| 0.508 | 6.3 | 6000 | 0.2046 | 0.2158 |
|
91 |
+
| 0.5226 | 6.61 | 6300 | 0.2515 | 0.3250 |
|
92 |
+
| 0.7576 | 6.93 | 6600 | 0.2343 | 0.2364 |
|
93 |
+
| 1.0089 | 7.24 | 6900 | 0.2731 | 0.2713 |
|
94 |
+
| 0.9462 | 7.56 | 7200 | 0.2588 | 0.2648 |
|
95 |
+
| 0.8648 | 7.87 | 7500 | 0.2916 | 0.3393 |
|
96 |
+
| 1.1282 | 8.19 | 7800 | 0.3830 | 0.4583 |
|
97 |
+
| 1.3279 | 8.5 | 8100 | 0.3910 | 0.4117 |
|
98 |
+
| 1.2722 | 8.82 | 8400 | 0.4424 | 0.3442 |
|
99 |
+
| 1.2886 | 9.13 | 8700 | 0.4421 | 0.4011 |
|
100 |
+
| 1.3274 | 9.45 | 9000 | 0.4483 | 0.4769 |
|
101 |
+
| 1.3235 | 9.76 | 9300 | 0.4490 | 0.4811 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.39.3
|
107 |
+
- Pytorch 2.1.2+cu121
|
108 |
+
- Datasets 2.18.0
|
109 |
+
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2423126260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a58b3292e0000e6d9a950d5a64af11b0bb2c5cee645c03fb150a46146ad578ff
|
3 |
size 2423126260
|
runs/Apr05_22-50-07_GPU/events.out.tfevents.1712337973.GPU.145321.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b38288d3ed66b56ea5c0bb452a3e8379f8593ea038c9f9d4af9412bd27dd5243
|
3 |
+
size 22664
|