# This file is a modified version of the Vision Transformer - Pytorch implementation # https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py from typing import List, Union, Tuple from einops import rearrange, repeat from einops.layers.torch import Rearrange import torch from torch import nn from transformers import PreTrainedModel from .configuration_metom import MetomConfig try: from flash_attn import flash_attn_func FLASH_ATTENTION_2_AVAILABLE = True except ImportError: FLASH_ATTENTION_2_AVAILABLE = False def size_pair(t): return t if isinstance(t, tuple) else (t, t) class MetomFeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class MetomAttention(nn.Module): def __init__(self, dim, heads, dim_head, dropout): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, "b h n d -> b n (h d)") return self.to_out(out) class MetomSdpaAttention(MetomAttention): def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h = self.heads), qkv) out = nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout.p if self.training else 0.0) out = rearrange(out, "b h n d -> b n (h d)") return self.to_out(out) class MetomFlashAttention2(MetomAttention): def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h = self.heads), qkv) out = flash_attn_func(q, k, v, dropout_p=self.dropout.p if self.training else 0.0) out = rearrange(out, "b h n d -> b n (h d)") return self.to_out(out) class MetomTransformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout, _attn_implementation = "eager"): super().__init__() if _attn_implementation == "flash_attention_2": assert FLASH_ATTENTION_2_AVAILABLE, "FlashAttention-2 is not available. Please install `flash-attn`." attn_cls = ( MetomAttention if _attn_implementation == "eager" else MetomSdpaAttention if _attn_implementation == "sdpa" else MetomFlashAttention2 if _attn_implementation == "flash_attention_2" else MetomAttention ) self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ attn_cls(dim, heads = heads, dim_head = dim_head, dropout = dropout), MetomFeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class MetomModel(PreTrainedModel): config_class = MetomConfig _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, config: MetomConfig): super().__init__(config) image_height, image_width = size_pair(config.image_size) patch_height, patch_width = size_pair(config.patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, "Image dimensions must be divisible by the patch size." num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = config.channels * patch_height * patch_width assert config.pool in {"cls", "mean"}, "pool type must be either cls (cls token) or mean (mean pooling)" assert len(config.labels) > 0, "labels must be composed of at least one label" assert config._attn_implementation in {"eager", "sdpa", "flash_attention_2"}, "Attention implementation must be either eager, sdpa or flash_attention_2" self.to_patch_embedding = nn.Sequential( Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, config.dim), nn.LayerNorm(config.dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, config.dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, config.dim)) self.dropout = nn.Dropout(config.emb_dropout) self.transformer = MetomTransformer( config.dim, config.depth, config.heads, config.dim_head, config.mlp_dim, config.dropout, config._attn_implementation ) self.pool = config.pool self.to_latent = nn.Identity() self.mlp_head = nn.Linear(config.dim, len(config.labels)) self.labels = config.labels def forward(self, processed_image): x = self.to_patch_embedding(processed_image) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, "1 1 d -> b 1 d", b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == "mean" else x[:, 0] x = self.to_latent(x) return self.mlp_head(x) def get_predictions(self, processed_image: torch.Tensor) -> List[str]: logits = self(processed_image) indices = torch.argmax(logits, dim=-1) return [self.labels[i] for i in indices] def get_topk_labels( self, processed_image: torch.Tensor, k: int = 5, return_probs: bool = False ) -> Union[List[List[str]], List[List[Tuple[str, float]]]]: assert 0 < k <= len(self.labels), "k must be a positive integer less than or equal to the number of labels" logits = self(processed_image) probs = torch.softmax(logits, dim=-1) topk_probs, topk_indices = torch.topk(probs, k, dim=-1) topk_labels = [[self.labels[i] for i in ti] for ti in topk_indices] if return_probs: return [ [(label, prob.item()) for label, prob in zip(labels, probs)] for labels, probs in zip(topk_labels, topk_probs) ] return topk_labels