Fill-Mask
Transformers
PyTorch
Safetensors
deberta
Generated from Trainer
Inference Endpoints
File size: 8,607 Bytes
2bbc891
 
 
 
1cdf099
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbc891
 
 
 
 
c96083a
2bbc891
b96f7f8
 
2bbc891
b96f7f8
 
 
 
2bbc891
 
 
b96f7f8
2bbc891
 
 
b96f7f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbc891
b96f7f8
 
2bbc891
b96f7f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbc891
 
b96f7f8
 
2bbc891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96f7f8
 
 
 
 
 
 
2bbc891
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: mit
tags:
- generated_from_trainer
datasets: Sakonii/nepalitext-language-model-dataset
mask_token: <mask>
widget:
- text: मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ।
    परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित
    छ।
  example_title: Example 1
- text: अचेल विद्यालय  कलेजहरूले स्मारिका कत्तिको प्रकाशन गर्छन्, यकिन छैन केही
    वर्षपहिलेसम्म गाउँसहरका सानाठूला <mask> संस्थाहरूमा पुग्दा शिक्षक वा कर्मचारीले
    संस्थाबाट प्रकाशित पत्रिका, स्मारिका  पुस्तक कोसेलीका रूपमा थमाउँथे
  example_title: Example 2
- text: जलविद्युत् विकासको ११० वर्षको इतिहास बनाएको नेपालमा हाल सरकारी  निजी क्षेत्रबाट
    गरी करिब  हजार मेगावाट <mask> उत्पादन भइरहेको 
  example_title: Example 3
model-index:
- name: de-berta-base-base-nepali
  results: []
---

# deberta-base-nepali

This model is pre-trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset consisting of over 13 million Nepali text sequences using a masked language modeling (MLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to [XLM-ROBERTa](https://arxiv.org/abs/1911.02116) and trains [DeBERTa](https://arxiv.org/abs/2006.03654) for language modeling.

It achieves the following results on the evaluation set:

mlm probability|evaluation loss|evaluation perplexity
--:|----:|-----:|
20%|1.860|6.424|

## Model description

Refer to original [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base)

## Intended uses & limitations

This backbone model intends to be fine-tuned on Nepali language focused downstream task such as sequence classification, token classification or question answering. 
The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences.

## Usage

This model can be used directly with a pipeline for masked language modeling:

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Sakonii/deberta-base-nepali')
>>> unmasker("मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।")

[{'score': 0.10054448992013931,
  'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, वातावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
  'token': 790,
  'token_str': 'वातावरण'},
 {'score': 0.05399947986006737,
  'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, स्वास्थ्य, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
  'token': 231,
  'token_str': 'स्वास्थ्य'},
 {'score': 0.045006219297647476,
  'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, जल, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
  'token': 1313,
  'token_str': 'जल'},
 {'score': 0.04032573476433754,
  'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, पर्यावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
  'token': 13156,
  'token_str': 'पर्यावरण'},
 {'score': 0.026729246601462364,
  'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, संचार, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
  'token': 3996,
  'token_str': 'संचार'}]
  ```

Here is how we can use the model to get the features of a given text in PyTorch:

```python
from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained('Sakonii/deberta-base-nepali')
model = AutoModelForMaskedLM.from_pretrained('Sakonii/deberta-base-nepali')

# prepare input
text = "चाहिएको text यता राख्नु होला।"
encoded_input = tokenizer(text, return_tensors='pt')

# forward pass
output = model(**encoded_input)
```

## Training data

This model is trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) language modeling dataset which combines the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia.
As for training the language model, the texts in the training set are grouped to a block of 512 tokens.

## Tokenization

A Sentence Piece Model (SPM) is trained on a subset of [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset for text tokenization. The tokenizer trained with vocab-size=24576, min-frequency=4, limit-alphabet=1000 and model-max-length=512.

## Training procedure
The model is trained with the same configuration as the original [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base); 512 tokens per instance, 6 instances per batch, and around 188.8K training steps (per epoch).


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Perplexity |
|:-------------:|:-----:|:------:|:---------------:|:----------:|
| 2.5454        | 1.0   | 188789 | 2.4273          | 11.3283    |
| 2.2592        | 2.0   | 377578 | 2.1448          | 8.5403     |
| 2.1171        | 3.0   | 566367 | 2.0030          | 7.4113     |
| 2.0227        | 4.0   | 755156 | 1.9133          | 6.7754     |
| 1.9375        | 5.0   | 943945 | 1.8600          | 6.4237     |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.9.1
- Datasets 2.0.0
- Tokenizers 0.11.6