memray commited on
Commit
5d04864
·
verified ·
1 Parent(s): b807618

MTEB scores

Browse files
Files changed (1) hide show
  1. README.md +3287 -1
README.md CHANGED
@@ -1,3 +1,3289 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: SFR-Embedding-Mistral
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 77.92537313432834
18
+ - type: ap
19
+ value: 40.86767661556651
20
+ - type: f1
21
+ value: 71.65758897929837
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 95.967
33
+ - type: ap
34
+ value: 94.46300829592593
35
+ - type: f1
36
+ value: 95.96507173189292
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 54.352000000000004
48
+ - type: f1
49
+ value: 53.636682615380174
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: ndcg_at_1
60
+ value: 43.314
61
+ - type: ndcg_at_2
62
+ value: 54.757
63
+ - type: ndcg_at_3
64
+ value: 58.84700000000001
65
+ - type: ndcg_at_5
66
+ value: 63.634
67
+ - type: ndcg_at_7
68
+ value: 65.741
69
+ - type: ndcg_at_10
70
+ value: 67.171
71
+ - type: ndcg_at_20
72
+ value: 68.585
73
+ - type: ndcg_at_30
74
+ value: 68.81
75
+ - type: ndcg_at_50
76
+ value: 68.932
77
+ - type: ndcg_at_70
78
+ value: 68.992
79
+ - type: ndcg_at_100
80
+ value: 69.014
81
+ - type: ndcg_at_200
82
+ value: 69.014
83
+ - type: ndcg_at_300
84
+ value: 69.014
85
+ - type: ndcg_at_500
86
+ value: 69.014
87
+ - type: ndcg_at_700
88
+ value: 69.014
89
+ - type: ndcg_at_1000
90
+ value: 69.014
91
+ - type: map_at_1
92
+ value: 43.314
93
+ - type: map_at_2
94
+ value: 52.383
95
+ - type: map_at_3
96
+ value: 55.108999999999995
97
+ - type: map_at_5
98
+ value: 57.772999999999996
99
+ - type: map_at_7
100
+ value: 58.718
101
+ - type: map_at_10
102
+ value: 59.256
103
+ - type: map_at_20
104
+ value: 59.668
105
+ - type: map_at_30
106
+ value: 59.709999999999994
107
+ - type: map_at_50
108
+ value: 59.727
109
+ - type: map_at_70
110
+ value: 59.733999999999995
111
+ - type: map_at_100
112
+ value: 59.73500000000001
113
+ - type: map_at_200
114
+ value: 59.73500000000001
115
+ - type: map_at_300
116
+ value: 59.73500000000001
117
+ - type: map_at_500
118
+ value: 59.73500000000001
119
+ - type: map_at_700
120
+ value: 59.73500000000001
121
+ - type: map_at_1000
122
+ value: 59.73500000000001
123
+ - type: recall_at_1
124
+ value: 43.314
125
+ - type: recall_at_2
126
+ value: 61.451
127
+ - type: recall_at_3
128
+ value: 69.63000000000001
129
+ - type: recall_at_5
130
+ value: 81.223
131
+ - type: recall_at_7
132
+ value: 87.33999999999999
133
+ - type: recall_at_10
134
+ value: 92.034
135
+ - type: recall_at_20
136
+ value: 97.44
137
+ - type: recall_at_30
138
+ value: 98.506
139
+ - type: recall_at_50
140
+ value: 99.14699999999999
141
+ - type: recall_at_70
142
+ value: 99.502
143
+ - type: recall_at_100
144
+ value: 99.644
145
+ - type: recall_at_200
146
+ value: 99.644
147
+ - type: recall_at_300
148
+ value: 99.644
149
+ - type: recall_at_500
150
+ value: 99.644
151
+ - type: recall_at_700
152
+ value: 99.644
153
+ - type: recall_at_1000
154
+ value: 99.644
155
+ - type: precision_at_1
156
+ value: 43.314
157
+ - type: precision_at_2
158
+ value: 30.725
159
+ - type: precision_at_3
160
+ value: 23.21
161
+ - type: precision_at_5
162
+ value: 16.245
163
+ - type: precision_at_7
164
+ value: 12.477
165
+ - type: precision_at_10
166
+ value: 9.203
167
+ - type: precision_at_20
168
+ value: 4.872
169
+ - type: precision_at_30
170
+ value: 3.2840000000000003
171
+ - type: precision_at_50
172
+ value: 1.983
173
+ - type: precision_at_70
174
+ value: 1.421
175
+ - type: precision_at_100
176
+ value: 0.996
177
+ - type: precision_at_200
178
+ value: 0.498
179
+ - type: precision_at_300
180
+ value: 0.332
181
+ - type: precision_at_500
182
+ value: 0.199
183
+ - type: precision_at_700
184
+ value: 0.14200000000000002
185
+ - type: precision_at_1000
186
+ value: 0.1
187
+ - type: mrr_at_1
188
+ value: 44.666
189
+ - type: mrr_at_2
190
+ value: 52.418
191
+ - type: mrr_at_3
192
+ value: 55.595000000000006
193
+ - type: mrr_at_5
194
+ value: 58.205
195
+ - type: mrr_at_7
196
+ value: 59.202999999999996
197
+ - type: mrr_at_10
198
+ value: 59.727
199
+ - type: mrr_at_20
200
+ value: 60.133
201
+ - type: mrr_at_30
202
+ value: 60.178
203
+ - type: mrr_at_50
204
+ value: 60.192
205
+ - type: mrr_at_70
206
+ value: 60.19799999999999
207
+ - type: mrr_at_100
208
+ value: 60.199999999999996
209
+ - type: mrr_at_200
210
+ value: 60.199999999999996
211
+ - type: mrr_at_300
212
+ value: 60.199999999999996
213
+ - type: mrr_at_500
214
+ value: 60.199999999999996
215
+ - type: mrr_at_700
216
+ value: 60.199999999999996
217
+ - type: mrr_at_1000
218
+ value: 60.199999999999996
219
+ - task:
220
+ type: Clustering
221
+ dataset:
222
+ type: mteb/arxiv-clustering-p2p
223
+ name: MTEB ArxivClusteringP2P
224
+ config: default
225
+ split: test
226
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
227
+ metrics:
228
+ - type: v_measure
229
+ value: 52.07508593014336
230
+ - task:
231
+ type: Clustering
232
+ dataset:
233
+ type: mteb/arxiv-clustering-s2s
234
+ name: MTEB ArxivClusteringS2S
235
+ config: default
236
+ split: test
237
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
238
+ metrics:
239
+ - type: v_measure
240
+ value: 47.381339333240675
241
+ - task:
242
+ type: Reranking
243
+ dataset:
244
+ type: mteb/askubuntudupquestions-reranking
245
+ name: MTEB AskUbuntuDupQuestions
246
+ config: default
247
+ split: test
248
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
249
+ metrics:
250
+ - type: map
251
+ value: 67.58376647859171
252
+ - type: mrr
253
+ value: 80.56885635140483
254
+ - task:
255
+ type: STS
256
+ dataset:
257
+ type: mteb/biosses-sts
258
+ name: MTEB BIOSSES
259
+ config: default
260
+ split: test
261
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
262
+ metrics:
263
+ - type: cos_sim_pearson
264
+ value: 88.40107280274783
265
+ - type: cos_sim_spearman
266
+ value: 86.07003345325681
267
+ - type: euclidean_pearson
268
+ value: 87.1726034325395
269
+ - type: euclidean_spearman
270
+ value: 86.07003345325681
271
+ - type: manhattan_pearson
272
+ value: 87.25660625029772
273
+ - type: manhattan_spearman
274
+ value: 86.3808839096893
275
+ - task:
276
+ type: Classification
277
+ dataset:
278
+ type: mteb/banking77
279
+ name: MTEB Banking77Classification
280
+ config: default
281
+ split: test
282
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
283
+ metrics:
284
+ - type: accuracy
285
+ value: 88.81168831168831
286
+ - type: f1
287
+ value: 88.76514496560141
288
+ - task:
289
+ type: Clustering
290
+ dataset:
291
+ type: mteb/biorxiv-clustering-p2p
292
+ name: MTEB BiorxivClusteringP2P
293
+ config: default
294
+ split: test
295
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
296
+ metrics:
297
+ - type: v_measure
298
+ value: 43.9382520874344
299
+ - task:
300
+ type: Clustering
301
+ dataset:
302
+ type: mteb/biorxiv-clustering-s2s
303
+ name: MTEB BiorxivClusteringS2S
304
+ config: default
305
+ split: test
306
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
307
+ metrics:
308
+ - type: v_measure
309
+ value: 41.14351847240913
310
+ - task:
311
+ type: Retrieval
312
+ dataset:
313
+ type: BeIR/cqadupstack
314
+ name: MTEB CQADupstackRetrieval
315
+ config: default
316
+ split: test
317
+ revision: None
318
+ metrics:
319
+ - type: ndcg_at_1
320
+ value: 34.51166666666667
321
+ - type: ndcg_at_2
322
+ value: 38.51591666666667
323
+ - type: ndcg_at_3
324
+ value: 40.95083333333333
325
+ - type: ndcg_at_5
326
+ value: 43.580666666666666
327
+ - type: ndcg_at_7
328
+ value: 45.0625
329
+ - type: ndcg_at_10
330
+ value: 46.49083333333333
331
+ - type: ndcg_at_20
332
+ value: 48.731333333333325
333
+ - type: ndcg_at_30
334
+ value: 49.78666666666667
335
+ - type: ndcg_at_50
336
+ value: 50.84049999999999
337
+ - type: ndcg_at_70
338
+ value: 51.393750000000004
339
+ - type: ndcg_at_100
340
+ value: 51.883333333333326
341
+ - type: ndcg_at_200
342
+ value: 52.65225
343
+ - type: ndcg_at_300
344
+ value: 52.98241666666669
345
+ - type: ndcg_at_500
346
+ value: 53.28541666666668
347
+ - type: ndcg_at_700
348
+ value: 53.49241666666668
349
+ - type: ndcg_at_1000
350
+ value: 53.63758333333334
351
+ - type: map_at_1
352
+ value: 29.10075
353
+ - type: map_at_2
354
+ value: 34.636500000000005
355
+ - type: map_at_3
356
+ value: 36.92033333333333
357
+ - type: map_at_5
358
+ value: 38.81641666666666
359
+ - type: map_at_7
360
+ value: 39.635416666666664
361
+ - type: map_at_10
362
+ value: 40.294583333333335
363
+ - type: map_at_20
364
+ value: 41.07574999999999
365
+ - type: map_at_30
366
+ value: 41.333
367
+ - type: map_at_50
368
+ value: 41.529333333333334
369
+ - type: map_at_70
370
+ value: 41.606833333333334
371
+ - type: map_at_100
372
+ value: 41.66224999999999
373
+ - type: map_at_200
374
+ value: 41.72691666666666
375
+ - type: map_at_300
376
+ value: 41.746583333333334
377
+ - type: map_at_500
378
+ value: 41.75983333333333
379
+ - type: map_at_700
380
+ value: 41.76558333333333
381
+ - type: map_at_1000
382
+ value: 41.769000000000005
383
+ - type: recall_at_1
384
+ value: 29.10075
385
+ - type: recall_at_2
386
+ value: 39.07658333333333
387
+ - type: recall_at_3
388
+ value: 44.93591666666667
389
+ - type: recall_at_5
390
+ value: 51.66883333333333
391
+ - type: recall_at_7
392
+ value: 55.881000000000014
393
+ - type: recall_at_10
394
+ value: 60.34691666666667
395
+ - type: recall_at_20
396
+ value: 68.44016666666667
397
+ - type: recall_at_30
398
+ value: 72.90766666666667
399
+ - type: recall_at_50
400
+ value: 77.843
401
+ - type: recall_at_70
402
+ value: 80.70366666666668
403
+ - type: recall_at_100
404
+ value: 83.42866666666667
405
+ - type: recall_at_200
406
+ value: 88.06816666666668
407
+ - type: recall_at_300
408
+ value: 90.249
409
+ - type: recall_at_500
410
+ value: 92.37616666666668
411
+ - type: recall_at_700
412
+ value: 93.978
413
+ - type: recall_at_1000
414
+ value: 95.12791666666666
415
+ - type: precision_at_1
416
+ value: 34.51166666666667
417
+ - type: precision_at_2
418
+ value: 24.326333333333327
419
+ - type: precision_at_3
420
+ value: 19.099249999999998
421
+ - type: precision_at_5
422
+ value: 13.672666666666666
423
+ - type: precision_at_7
424
+ value: 10.772
425
+ - type: precision_at_10
426
+ value: 8.302166666666668
427
+ - type: precision_at_20
428
+ value: 4.8960833333333325
429
+ - type: precision_at_30
430
+ value: 3.551083333333333
431
+ - type: precision_at_50
432
+ value: 2.3386666666666662
433
+ - type: precision_at_70
434
+ value: 1.7605833333333334
435
+ - type: precision_at_100
436
+ value: 1.2965
437
+ - type: precision_at_200
438
+ value: 0.7106666666666668
439
+ - type: precision_at_300
440
+ value: 0.4955
441
+ - type: precision_at_500
442
+ value: 0.3106666666666667
443
+ - type: precision_at_700
444
+ value: 0.22791666666666668
445
+ - type: precision_at_1000
446
+ value: 0.1635833333333333
447
+ - type: mrr_at_1
448
+ value: 34.51166666666667
449
+ - type: mrr_at_2
450
+ value: 39.954249999999995
451
+ - type: mrr_at_3
452
+ value: 41.93741666666668
453
+ - type: mrr_at_5
454
+ value: 43.487166666666674
455
+ - type: mrr_at_7
456
+ value: 44.14983333333333
457
+ - type: mrr_at_10
458
+ value: 44.62766666666666
459
+ - type: mrr_at_20
460
+ value: 45.15291666666668
461
+ - type: mrr_at_30
462
+ value: 45.317
463
+ - type: mrr_at_50
464
+ value: 45.42875
465
+ - type: mrr_at_70
466
+ value: 45.46966666666667
467
+ - type: mrr_at_100
468
+ value: 45.49716666666667
469
+ - type: mrr_at_200
470
+ value: 45.525166666666664
471
+ - type: mrr_at_300
472
+ value: 45.53233333333335
473
+ - type: mrr_at_500
474
+ value: 45.5365
475
+ - type: mrr_at_700
476
+ value: 45.538583333333335
477
+ - type: mrr_at_1000
478
+ value: 45.539583333333326
479
+ - task:
480
+ type: Retrieval
481
+ dataset:
482
+ type: climate-fever
483
+ name: MTEB ClimateFEVER
484
+ config: default
485
+ split: test
486
+ revision: None
487
+ metrics:
488
+ - type: ndcg_at_1
489
+ value: 35.179
490
+ - type: ndcg_at_2
491
+ value: 31.243
492
+ - type: ndcg_at_3
493
+ value: 30.562
494
+ - type: ndcg_at_5
495
+ value: 32.409
496
+ - type: ndcg_at_7
497
+ value: 34.525
498
+ - type: ndcg_at_10
499
+ value: 36.415
500
+ - type: ndcg_at_20
501
+ value: 39.443
502
+ - type: ndcg_at_30
503
+ value: 40.796
504
+ - type: ndcg_at_50
505
+ value: 42.16
506
+ - type: ndcg_at_70
507
+ value: 42.971
508
+ - type: ndcg_at_100
509
+ value: 43.691
510
+ - type: ndcg_at_200
511
+ value: 45.004
512
+ - type: ndcg_at_300
513
+ value: 45.527
514
+ - type: ndcg_at_500
515
+ value: 46.072
516
+ - type: ndcg_at_700
517
+ value: 46.387
518
+ - type: ndcg_at_1000
519
+ value: 46.663
520
+ - type: map_at_1
521
+ value: 15.692
522
+ - type: map_at_2
523
+ value: 20.116
524
+ - type: map_at_3
525
+ value: 22.6
526
+ - type: map_at_5
527
+ value: 24.701
528
+ - type: map_at_7
529
+ value: 25.934
530
+ - type: map_at_10
531
+ value: 26.843
532
+ - type: map_at_20
533
+ value: 27.975
534
+ - type: map_at_30
535
+ value: 28.372000000000003
536
+ - type: map_at_50
537
+ value: 28.671000000000003
538
+ - type: map_at_70
539
+ value: 28.803
540
+ - type: map_at_100
541
+ value: 28.895
542
+ - type: map_at_200
543
+ value: 29.011
544
+ - type: map_at_300
545
+ value: 29.042
546
+ - type: map_at_500
547
+ value: 29.065
548
+ - type: map_at_700
549
+ value: 29.075
550
+ - type: map_at_1000
551
+ value: 29.081000000000003
552
+ - type: recall_at_1
553
+ value: 15.692
554
+ - type: recall_at_2
555
+ value: 22.602
556
+ - type: recall_at_3
557
+ value: 27.814
558
+ - type: recall_at_5
559
+ value: 33.756
560
+ - type: recall_at_7
561
+ value: 38.073
562
+ - type: recall_at_10
563
+ value: 42.553000000000004
564
+ - type: recall_at_20
565
+ value: 51.121
566
+ - type: recall_at_30
567
+ value: 55.523999999999994
568
+ - type: recall_at_50
569
+ value: 60.586
570
+ - type: recall_at_70
571
+ value: 63.94
572
+ - type: recall_at_100
573
+ value: 67.134
574
+ - type: recall_at_200
575
+ value: 73.543
576
+ - type: recall_at_300
577
+ value: 76.372
578
+ - type: recall_at_500
579
+ value: 79.60199999999999
580
+ - type: recall_at_700
581
+ value: 81.536
582
+ - type: recall_at_1000
583
+ value: 83.37400000000001
584
+ - type: precision_at_1
585
+ value: 35.179
586
+ - type: precision_at_2
587
+ value: 27.199
588
+ - type: precision_at_3
589
+ value: 22.953000000000003
590
+ - type: precision_at_5
591
+ value: 17.224999999999998
592
+ - type: precision_at_7
593
+ value: 14.238999999999999
594
+ - type: precision_at_10
595
+ value: 11.303
596
+ - type: precision_at_20
597
+ value: 6.954000000000001
598
+ - type: precision_at_30
599
+ value: 5.116
600
+ - type: precision_at_50
601
+ value: 3.395
602
+ - type: precision_at_70
603
+ value: 2.579
604
+ - type: precision_at_100
605
+ value: 1.9109999999999998
606
+ - type: precision_at_200
607
+ value: 1.065
608
+ - type: precision_at_300
609
+ value: 0.743
610
+ - type: precision_at_500
611
+ value: 0.46699999999999997
612
+ - type: precision_at_700
613
+ value: 0.344
614
+ - type: precision_at_1000
615
+ value: 0.247
616
+ - type: mrr_at_1
617
+ value: 35.179
618
+ - type: mrr_at_2
619
+ value: 41.792
620
+ - type: mrr_at_3
621
+ value: 44.484
622
+ - type: mrr_at_5
623
+ value: 46.39
624
+ - type: mrr_at_7
625
+ value: 47.125
626
+ - type: mrr_at_10
627
+ value: 47.711999999999996
628
+ - type: mrr_at_20
629
+ value: 48.214
630
+ - type: mrr_at_30
631
+ value: 48.325
632
+ - type: mrr_at_50
633
+ value: 48.392
634
+ - type: mrr_at_70
635
+ value: 48.418
636
+ - type: mrr_at_100
637
+ value: 48.44
638
+ - type: mrr_at_200
639
+ value: 48.46
640
+ - type: mrr_at_300
641
+ value: 48.461999999999996
642
+ - type: mrr_at_500
643
+ value: 48.466
644
+ - type: mrr_at_700
645
+ value: 48.466
646
+ - type: mrr_at_1000
647
+ value: 48.467
648
+ - task:
649
+ type: Retrieval
650
+ dataset:
651
+ type: dbpedia-entity
652
+ name: MTEB DBPedia
653
+ config: default
654
+ split: test
655
+ revision: None
656
+ metrics:
657
+ - type: ndcg_at_1
658
+ value: 62.375
659
+ - type: ndcg_at_2
660
+ value: 56.286
661
+ - type: ndcg_at_3
662
+ value: 53.665
663
+ - type: ndcg_at_5
664
+ value: 51.139
665
+ - type: ndcg_at_7
666
+ value: 49.873
667
+ - type: ndcg_at_10
668
+ value: 49.056
669
+ - type: ndcg_at_20
670
+ value: 48.783
671
+ - type: ndcg_at_30
672
+ value: 49.166
673
+ - type: ndcg_at_50
674
+ value: 51.141999999999996
675
+ - type: ndcg_at_70
676
+ value: 52.774
677
+ - type: ndcg_at_100
678
+ value: 54.403
679
+ - type: ndcg_at_200
680
+ value: 57.419
681
+ - type: ndcg_at_300
682
+ value: 58.778
683
+ - type: ndcg_at_500
684
+ value: 60.228
685
+ - type: ndcg_at_700
686
+ value: 61.07599999999999
687
+ - type: ndcg_at_1000
688
+ value: 61.846000000000004
689
+ - type: map_at_1
690
+ value: 10.359
691
+ - type: map_at_2
692
+ value: 14.446
693
+ - type: map_at_3
694
+ value: 16.689
695
+ - type: map_at_5
696
+ value: 20.096
697
+ - type: map_at_7
698
+ value: 22.247
699
+ - type: map_at_10
700
+ value: 24.468999999999998
701
+ - type: map_at_20
702
+ value: 28.938000000000002
703
+ - type: map_at_30
704
+ value: 31.134
705
+ - type: map_at_50
706
+ value: 33.403
707
+ - type: map_at_70
708
+ value: 34.486
709
+ - type: map_at_100
710
+ value: 35.337
711
+ - type: map_at_200
712
+ value: 36.364999999999995
713
+ - type: map_at_300
714
+ value: 36.735
715
+ - type: map_at_500
716
+ value: 37.057
717
+ - type: map_at_700
718
+ value: 37.225
719
+ - type: map_at_1000
720
+ value: 37.379
721
+ - type: recall_at_1
722
+ value: 10.359
723
+ - type: recall_at_2
724
+ value: 14.945
725
+ - type: recall_at_3
726
+ value: 17.694
727
+ - type: recall_at_5
728
+ value: 22.677
729
+ - type: recall_at_7
730
+ value: 26.131
731
+ - type: recall_at_10
732
+ value: 30.053
733
+ - type: recall_at_20
734
+ value: 39.518
735
+ - type: recall_at_30
736
+ value: 44.925
737
+ - type: recall_at_50
738
+ value: 52.154
739
+ - type: recall_at_70
740
+ value: 56.729
741
+ - type: recall_at_100
742
+ value: 61.18900000000001
743
+ - type: recall_at_200
744
+ value: 70.407
745
+ - type: recall_at_300
746
+ value: 74.412
747
+ - type: recall_at_500
748
+ value: 78.891
749
+ - type: recall_at_700
750
+ value: 81.74
751
+ - type: recall_at_1000
752
+ value: 84.253
753
+ - type: precision_at_1
754
+ value: 75.0
755
+ - type: precision_at_2
756
+ value: 64.125
757
+ - type: precision_at_3
758
+ value: 57.833
759
+ - type: precision_at_5
760
+ value: 50.24999999999999
761
+ - type: precision_at_7
762
+ value: 44.75
763
+ - type: precision_at_10
764
+ value: 39.75
765
+ - type: precision_at_20
766
+ value: 30.412
767
+ - type: precision_at_30
768
+ value: 25.141999999999996
769
+ - type: precision_at_50
770
+ value: 19.2
771
+ - type: precision_at_70
772
+ value: 15.729000000000001
773
+ - type: precision_at_100
774
+ value: 12.552
775
+ - type: precision_at_200
776
+ value: 7.866
777
+ - type: precision_at_300
778
+ value: 5.9270000000000005
779
+ - type: precision_at_500
780
+ value: 4.1129999999999995
781
+ - type: precision_at_700
782
+ value: 3.2460000000000004
783
+ - type: precision_at_1000
784
+ value: 2.5260000000000002
785
+ - type: mrr_at_1
786
+ value: 75.0
787
+ - type: mrr_at_2
788
+ value: 78.625
789
+ - type: mrr_at_3
790
+ value: 79.708
791
+ - type: mrr_at_5
792
+ value: 80.446
793
+ - type: mrr_at_7
794
+ value: 80.862
795
+ - type: mrr_at_10
796
+ value: 81.161
797
+ - type: mrr_at_20
798
+ value: 81.3
799
+ - type: mrr_at_30
800
+ value: 81.348
801
+ - type: mrr_at_50
802
+ value: 81.361
803
+ - type: mrr_at_70
804
+ value: 81.361
805
+ - type: mrr_at_100
806
+ value: 81.361
807
+ - type: mrr_at_200
808
+ value: 81.367
809
+ - type: mrr_at_300
810
+ value: 81.367
811
+ - type: mrr_at_500
812
+ value: 81.368
813
+ - type: mrr_at_700
814
+ value: 81.368
815
+ - type: mrr_at_1000
816
+ value: 81.368
817
+ - task:
818
+ type: Classification
819
+ dataset:
820
+ type: mteb/emotion
821
+ name: MTEB EmotionClassification
822
+ config: default
823
+ split: test
824
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
825
+ metrics:
826
+ - type: accuracy
827
+ value: 50.239999999999995
828
+ - type: f1
829
+ value: 46.42361822342044
830
+ - task:
831
+ type: Retrieval
832
+ dataset:
833
+ type: fever
834
+ name: MTEB FEVER
835
+ config: default
836
+ split: test
837
+ revision: None
838
+ metrics:
839
+ - type: ndcg_at_1
840
+ value: 83.723
841
+ - type: ndcg_at_2
842
+ value: 86.777
843
+ - type: ndcg_at_3
844
+ value: 87.997
845
+ - type: ndcg_at_5
846
+ value: 88.864
847
+ - type: ndcg_at_7
848
+ value: 89.143
849
+ - type: ndcg_at_10
850
+ value: 89.349
851
+ - type: ndcg_at_20
852
+ value: 89.709
853
+ - type: ndcg_at_30
854
+ value: 89.82900000000001
855
+ - type: ndcg_at_50
856
+ value: 89.923
857
+ - type: ndcg_at_70
858
+ value: 89.982
859
+ - type: ndcg_at_100
860
+ value: 90.026
861
+ - type: ndcg_at_200
862
+ value: 90.10000000000001
863
+ - type: ndcg_at_300
864
+ value: 90.12599999999999
865
+ - type: ndcg_at_500
866
+ value: 90.17399999999999
867
+ - type: ndcg_at_700
868
+ value: 90.19
869
+ - type: ndcg_at_1000
870
+ value: 90.208
871
+ - type: map_at_1
872
+ value: 77.64999999999999
873
+ - type: map_at_2
874
+ value: 83.769
875
+ - type: map_at_3
876
+ value: 85.041
877
+ - type: map_at_5
878
+ value: 85.736
879
+ - type: map_at_7
880
+ value: 85.924
881
+ - type: map_at_10
882
+ value: 86.032
883
+ - type: map_at_20
884
+ value: 86.177
885
+ - type: map_at_30
886
+ value: 86.213
887
+ - type: map_at_50
888
+ value: 86.233
889
+ - type: map_at_70
890
+ value: 86.24300000000001
891
+ - type: map_at_100
892
+ value: 86.249
893
+ - type: map_at_200
894
+ value: 86.256
895
+ - type: map_at_300
896
+ value: 86.258
897
+ - type: map_at_500
898
+ value: 86.26
899
+ - type: map_at_700
900
+ value: 86.26
901
+ - type: map_at_1000
902
+ value: 86.261
903
+ - type: recall_at_1
904
+ value: 77.64999999999999
905
+ - type: recall_at_2
906
+ value: 88.53999999999999
907
+ - type: recall_at_3
908
+ value: 91.696
909
+ - type: recall_at_5
910
+ value: 93.916
911
+ - type: recall_at_7
912
+ value: 94.731
913
+ - type: recall_at_10
914
+ value: 95.318
915
+ - type: recall_at_20
916
+ value: 96.507
917
+ - type: recall_at_30
918
+ value: 96.956
919
+ - type: recall_at_50
920
+ value: 97.34899999999999
921
+ - type: recall_at_70
922
+ value: 97.61
923
+ - type: recall_at_100
924
+ value: 97.83
925
+ - type: recall_at_200
926
+ value: 98.223
927
+ - type: recall_at_300
928
+ value: 98.374
929
+ - type: recall_at_500
930
+ value: 98.67899999999999
931
+ - type: recall_at_700
932
+ value: 98.787
933
+ - type: recall_at_1000
934
+ value: 98.919
935
+ - type: precision_at_1
936
+ value: 83.723
937
+ - type: precision_at_2
938
+ value: 48.425000000000004
939
+ - type: precision_at_3
940
+ value: 33.638
941
+ - type: precision_at_5
942
+ value: 20.843
943
+ - type: precision_at_7
944
+ value: 15.079
945
+ - type: precision_at_10
946
+ value: 10.674999999999999
947
+ - type: precision_at_20
948
+ value: 5.457999999999999
949
+ - type: precision_at_30
950
+ value: 3.6740000000000004
951
+ - type: precision_at_50
952
+ value: 2.2239999999999998
953
+ - type: precision_at_70
954
+ value: 1.599
955
+ - type: precision_at_100
956
+ value: 1.125
957
+ - type: precision_at_200
958
+ value: 0.5680000000000001
959
+ - type: precision_at_300
960
+ value: 0.38
961
+ - type: precision_at_500
962
+ value: 0.22999999999999998
963
+ - type: precision_at_700
964
+ value: 0.165
965
+ - type: precision_at_1000
966
+ value: 0.116
967
+ - type: mrr_at_1
968
+ value: 83.723
969
+ - type: mrr_at_2
970
+ value: 88.794
971
+ - type: mrr_at_3
972
+ value: 89.679
973
+ - type: mrr_at_5
974
+ value: 90.049
975
+ - type: mrr_at_7
976
+ value: 90.129
977
+ - type: mrr_at_10
978
+ value: 90.167
979
+ - type: mrr_at_20
980
+ value: 90.208
981
+ - type: mrr_at_30
982
+ value: 90.214
983
+ - type: mrr_at_50
984
+ value: 90.217
985
+ - type: mrr_at_70
986
+ value: 90.218
987
+ - type: mrr_at_100
988
+ value: 90.21900000000001
989
+ - type: mrr_at_200
990
+ value: 90.21900000000001
991
+ - type: mrr_at_300
992
+ value: 90.21900000000001
993
+ - type: mrr_at_500
994
+ value: 90.21900000000001
995
+ - type: mrr_at_700
996
+ value: 90.21900000000001
997
+ - type: mrr_at_1000
998
+ value: 90.21900000000001
999
+ - task:
1000
+ type: Retrieval
1001
+ dataset:
1002
+ type: fiqa
1003
+ name: MTEB FiQA2018
1004
+ config: default
1005
+ split: test
1006
+ revision: None
1007
+ metrics:
1008
+ - type: ndcg_at_1
1009
+ value: 59.721999999999994
1010
+ - type: ndcg_at_2
1011
+ value: 56.85
1012
+ - type: ndcg_at_3
1013
+ value: 56.462999999999994
1014
+ - type: ndcg_at_5
1015
+ value: 57.75599999999999
1016
+ - type: ndcg_at_7
1017
+ value: 59.109
1018
+ - type: ndcg_at_10
1019
+ value: 60.402
1020
+ - type: ndcg_at_20
1021
+ value: 63.071999999999996
1022
+ - type: ndcg_at_30
1023
+ value: 64.302
1024
+ - type: ndcg_at_50
1025
+ value: 65.619
1026
+ - type: ndcg_at_70
1027
+ value: 66.161
1028
+ - type: ndcg_at_100
1029
+ value: 66.645
1030
+ - type: ndcg_at_200
1031
+ value: 67.353
1032
+ - type: ndcg_at_300
1033
+ value: 67.646
1034
+ - type: ndcg_at_500
1035
+ value: 67.852
1036
+ - type: ndcg_at_700
1037
+ value: 67.974
1038
+ - type: ndcg_at_1000
1039
+ value: 68.084
1040
+ - type: map_at_1
1041
+ value: 31.56
1042
+ - type: map_at_2
1043
+ value: 42.093
1044
+ - type: map_at_3
1045
+ value: 46.177
1046
+ - type: map_at_5
1047
+ value: 49.78
1048
+ - type: map_at_7
1049
+ value: 51.410999999999994
1050
+ - type: map_at_10
1051
+ value: 52.524
1052
+ - type: map_at_20
1053
+ value: 53.815000000000005
1054
+ - type: map_at_30
1055
+ value: 54.201
1056
+ - type: map_at_50
1057
+ value: 54.531
1058
+ - type: map_at_70
1059
+ value: 54.625
1060
+ - type: map_at_100
1061
+ value: 54.686
1062
+ - type: map_at_200
1063
+ value: 54.757999999999996
1064
+ - type: map_at_300
1065
+ value: 54.776
1066
+ - type: map_at_500
1067
+ value: 54.786
1068
+ - type: map_at_700
1069
+ value: 54.790000000000006
1070
+ - type: map_at_1000
1071
+ value: 54.793000000000006
1072
+ - type: recall_at_1
1073
+ value: 31.56
1074
+ - type: recall_at_2
1075
+ value: 44.858
1076
+ - type: recall_at_3
1077
+ value: 51.11
1078
+ - type: recall_at_5
1079
+ value: 58.394
1080
+ - type: recall_at_7
1081
+ value: 63.001
1082
+ - type: recall_at_10
1083
+ value: 66.81200000000001
1084
+ - type: recall_at_20
1085
+ value: 74.901
1086
+ - type: recall_at_30
1087
+ value: 79.218
1088
+ - type: recall_at_50
1089
+ value: 84.49
1090
+ - type: recall_at_70
1091
+ value: 87.003
1092
+ - type: recall_at_100
1093
+ value: 89.345
1094
+ - type: recall_at_200
1095
+ value: 93.173
1096
+ - type: recall_at_300
1097
+ value: 94.906
1098
+ - type: recall_at_500
1099
+ value: 96.223
1100
+ - type: recall_at_700
1101
+ value: 97.043
1102
+ - type: recall_at_1000
1103
+ value: 97.785
1104
+ - type: precision_at_1
1105
+ value: 59.721999999999994
1106
+ - type: precision_at_2
1107
+ value: 46.682
1108
+ - type: precision_at_3
1109
+ value: 37.602999999999994
1110
+ - type: precision_at_5
1111
+ value: 27.500000000000004
1112
+ - type: precision_at_7
1113
+ value: 21.847
1114
+ - type: precision_at_10
1115
+ value: 16.667
1116
+ - type: precision_at_20
1117
+ value: 9.545
1118
+ - type: precision_at_30
1119
+ value: 6.795
1120
+ - type: precision_at_50
1121
+ value: 4.38
1122
+ - type: precision_at_70
1123
+ value: 3.221
1124
+ - type: precision_at_100
1125
+ value: 2.319
1126
+ - type: precision_at_200
1127
+ value: 1.2149999999999999
1128
+ - type: precision_at_300
1129
+ value: 0.827
1130
+ - type: precision_at_500
1131
+ value: 0.504
1132
+ - type: precision_at_700
1133
+ value: 0.364
1134
+ - type: precision_at_1000
1135
+ value: 0.257
1136
+ - type: mrr_at_1
1137
+ value: 59.721999999999994
1138
+ - type: mrr_at_2
1139
+ value: 64.506
1140
+ - type: mrr_at_3
1141
+ value: 65.792
1142
+ - type: mrr_at_5
1143
+ value: 66.965
1144
+ - type: mrr_at_7
1145
+ value: 67.34700000000001
1146
+ - type: mrr_at_10
1147
+ value: 67.57
1148
+ - type: mrr_at_20
1149
+ value: 67.896
1150
+ - type: mrr_at_30
1151
+ value: 68.008
1152
+ - type: mrr_at_50
1153
+ value: 68.083
1154
+ - type: mrr_at_70
1155
+ value: 68.105
1156
+ - type: mrr_at_100
1157
+ value: 68.116
1158
+ - type: mrr_at_200
1159
+ value: 68.12700000000001
1160
+ - type: mrr_at_300
1161
+ value: 68.13
1162
+ - type: mrr_at_500
1163
+ value: 68.132
1164
+ - type: mrr_at_700
1165
+ value: 68.133
1166
+ - type: mrr_at_1000
1167
+ value: 68.133
1168
+ - task:
1169
+ type: Retrieval
1170
+ dataset:
1171
+ type: hotpotqa
1172
+ name: MTEB HotpotQA
1173
+ config: default
1174
+ split: test
1175
+ revision: None
1176
+ metrics:
1177
+ - type: ndcg_at_1
1178
+ value: 81.796
1179
+ - type: ndcg_at_2
1180
+ value: 67.999
1181
+ - type: ndcg_at_3
1182
+ value: 72.15599999999999
1183
+ - type: ndcg_at_5
1184
+ value: 74.99900000000001
1185
+ - type: ndcg_at_7
1186
+ value: 76.179
1187
+ - type: ndcg_at_10
1188
+ value: 77.022
1189
+ - type: ndcg_at_20
1190
+ value: 78.173
1191
+ - type: ndcg_at_30
1192
+ value: 78.648
1193
+ - type: ndcg_at_50
1194
+ value: 79.104
1195
+ - type: ndcg_at_70
1196
+ value: 79.335
1197
+ - type: ndcg_at_100
1198
+ value: 79.56
1199
+ - type: ndcg_at_200
1200
+ value: 79.911
1201
+ - type: ndcg_at_300
1202
+ value: 80.045
1203
+ - type: ndcg_at_500
1204
+ value: 80.19500000000001
1205
+ - type: ndcg_at_700
1206
+ value: 80.281
1207
+ - type: ndcg_at_1000
1208
+ value: 80.35
1209
+ - type: map_at_1
1210
+ value: 40.898
1211
+ - type: map_at_2
1212
+ value: 62.016000000000005
1213
+ - type: map_at_3
1214
+ value: 66.121
1215
+ - type: map_at_5
1216
+ value: 68.471
1217
+ - type: map_at_7
1218
+ value: 69.261
1219
+ - type: map_at_10
1220
+ value: 69.738
1221
+ - type: map_at_20
1222
+ value: 70.208
1223
+ - type: map_at_30
1224
+ value: 70.343
1225
+ - type: map_at_50
1226
+ value: 70.43700000000001
1227
+ - type: map_at_70
1228
+ value: 70.47099999999999
1229
+ - type: map_at_100
1230
+ value: 70.498
1231
+ - type: map_at_200
1232
+ value: 70.526
1233
+ - type: map_at_300
1234
+ value: 70.533
1235
+ - type: map_at_500
1236
+ value: 70.538
1237
+ - type: map_at_700
1238
+ value: 70.541
1239
+ - type: map_at_1000
1240
+ value: 70.542
1241
+ - type: recall_at_1
1242
+ value: 40.898
1243
+ - type: recall_at_2
1244
+ value: 63.964
1245
+ - type: recall_at_3
1246
+ value: 70.743
1247
+ - type: recall_at_5
1248
+ value: 76.36699999999999
1249
+ - type: recall_at_7
1250
+ value: 79.142
1251
+ - type: recall_at_10
1252
+ value: 81.404
1253
+ - type: recall_at_20
1254
+ value: 85.111
1255
+ - type: recall_at_30
1256
+ value: 86.92800000000001
1257
+ - type: recall_at_50
1258
+ value: 88.899
1259
+ - type: recall_at_70
1260
+ value: 90.01400000000001
1261
+ - type: recall_at_100
1262
+ value: 91.19500000000001
1263
+ - type: recall_at_200
1264
+ value: 93.234
1265
+ - type: recall_at_300
1266
+ value: 94.105
1267
+ - type: recall_at_500
1268
+ value: 95.159
1269
+ - type: recall_at_700
1270
+ value: 95.8
1271
+ - type: recall_at_1000
1272
+ value: 96.34700000000001
1273
+ - type: precision_at_1
1274
+ value: 81.796
1275
+ - type: precision_at_2
1276
+ value: 63.964
1277
+ - type: precision_at_3
1278
+ value: 47.162
1279
+ - type: precision_at_5
1280
+ value: 30.547
1281
+ - type: precision_at_7
1282
+ value: 22.612
1283
+ - type: precision_at_10
1284
+ value: 16.281000000000002
1285
+ - type: precision_at_20
1286
+ value: 8.511000000000001
1287
+ - type: precision_at_30
1288
+ value: 5.795
1289
+ - type: precision_at_50
1290
+ value: 3.556
1291
+ - type: precision_at_70
1292
+ value: 2.572
1293
+ - type: precision_at_100
1294
+ value: 1.8239999999999998
1295
+ - type: precision_at_200
1296
+ value: 0.932
1297
+ - type: precision_at_300
1298
+ value: 0.627
1299
+ - type: precision_at_500
1300
+ value: 0.381
1301
+ - type: precision_at_700
1302
+ value: 0.27399999999999997
1303
+ - type: precision_at_1000
1304
+ value: 0.193
1305
+ - type: mrr_at_1
1306
+ value: 81.796
1307
+ - type: mrr_at_2
1308
+ value: 85.69200000000001
1309
+ - type: mrr_at_3
1310
+ value: 86.52
1311
+ - type: mrr_at_5
1312
+ value: 86.973
1313
+ - type: mrr_at_7
1314
+ value: 87.13300000000001
1315
+ - type: mrr_at_10
1316
+ value: 87.208
1317
+ - type: mrr_at_20
1318
+ value: 87.303
1319
+ - type: mrr_at_30
1320
+ value: 87.32799999999999
1321
+ - type: mrr_at_50
1322
+ value: 87.347
1323
+ - type: mrr_at_70
1324
+ value: 87.35199999999999
1325
+ - type: mrr_at_100
1326
+ value: 87.355
1327
+ - type: mrr_at_200
1328
+ value: 87.357
1329
+ - type: mrr_at_300
1330
+ value: 87.357
1331
+ - type: mrr_at_500
1332
+ value: 87.358
1333
+ - type: mrr_at_700
1334
+ value: 87.358
1335
+ - type: mrr_at_1000
1336
+ value: 87.358
1337
+ - task:
1338
+ type: Classification
1339
+ dataset:
1340
+ type: mteb/imdb
1341
+ name: MTEB ImdbClassification
1342
+ config: default
1343
+ split: test
1344
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1345
+ metrics:
1346
+ - type: accuracy
1347
+ value: 94.79200000000002
1348
+ - type: ap
1349
+ value: 92.54484356773553
1350
+ - type: f1
1351
+ value: 94.78965313682525
1352
+ - task:
1353
+ type: Retrieval
1354
+ dataset:
1355
+ type: msmarco
1356
+ name: MTEB MSMARCO
1357
+ config: default
1358
+ split: dev
1359
+ revision: None
1360
+ metrics:
1361
+ - type: ndcg_at_1
1362
+ value: 24.398
1363
+ - type: ndcg_at_2
1364
+ value: 31.336000000000002
1365
+ - type: ndcg_at_3
1366
+ value: 35.266999999999996
1367
+ - type: ndcg_at_5
1368
+ value: 39.356
1369
+ - type: ndcg_at_7
1370
+ value: 41.562
1371
+ - type: ndcg_at_10
1372
+ value: 43.408
1373
+ - type: ndcg_at_20
1374
+ value: 46.107
1375
+ - type: ndcg_at_30
1376
+ value: 47.164
1377
+ - type: ndcg_at_50
1378
+ value: 48.126000000000005
1379
+ - type: ndcg_at_70
1380
+ value: 48.626999999999995
1381
+ - type: ndcg_at_100
1382
+ value: 49.043
1383
+ - type: ndcg_at_200
1384
+ value: 49.575
1385
+ - type: ndcg_at_300
1386
+ value: 49.794
1387
+ - type: ndcg_at_500
1388
+ value: 49.942
1389
+ - type: ndcg_at_700
1390
+ value: 50.014
1391
+ - type: ndcg_at_1000
1392
+ value: 50.077000000000005
1393
+ - type: map_at_1
1394
+ value: 23.723
1395
+ - type: map_at_2
1396
+ value: 29.593000000000004
1397
+ - type: map_at_3
1398
+ value: 32.273
1399
+ - type: map_at_5
1400
+ value: 34.587
1401
+ - type: map_at_7
1402
+ value: 35.589999999999996
1403
+ - type: map_at_10
1404
+ value: 36.296
1405
+ - type: map_at_20
1406
+ value: 37.059999999999995
1407
+ - type: map_at_30
1408
+ value: 37.265
1409
+ - type: map_at_50
1410
+ value: 37.402
1411
+ - type: map_at_70
1412
+ value: 37.454
1413
+ - type: map_at_100
1414
+ value: 37.486999999999995
1415
+ - type: map_at_200
1416
+ value: 37.516
1417
+ - type: map_at_300
1418
+ value: 37.524
1419
+ - type: map_at_500
1420
+ value: 37.528
1421
+ - type: map_at_700
1422
+ value: 37.529
1423
+ - type: map_at_1000
1424
+ value: 37.53
1425
+ - type: recall_at_1
1426
+ value: 23.723
1427
+ - type: recall_at_2
1428
+ value: 35.355
1429
+ - type: recall_at_3
1430
+ value: 43.22
1431
+ - type: recall_at_5
1432
+ value: 53.025
1433
+ - type: recall_at_7
1434
+ value: 59.327
1435
+ - type: recall_at_10
1436
+ value: 65.302
1437
+ - type: recall_at_20
1438
+ value: 75.765
1439
+ - type: recall_at_30
1440
+ value: 80.632
1441
+ - type: recall_at_50
1442
+ value: 85.63499999999999
1443
+ - type: recall_at_70
1444
+ value: 88.554
1445
+ - type: recall_at_100
1446
+ value: 91.16300000000001
1447
+ - type: recall_at_200
1448
+ value: 94.85
1449
+ - type: recall_at_300
1450
+ value: 96.532
1451
+ - type: recall_at_500
1452
+ value: 97.751
1453
+ - type: recall_at_700
1454
+ value: 98.383
1455
+ - type: recall_at_1000
1456
+ value: 98.97
1457
+ - type: precision_at_1
1458
+ value: 24.398
1459
+ - type: precision_at_2
1460
+ value: 18.274
1461
+ - type: precision_at_3
1462
+ value: 14.951999999999998
1463
+ - type: precision_at_5
1464
+ value: 11.052
1465
+ - type: precision_at_7
1466
+ value: 8.84
1467
+ - type: precision_at_10
1468
+ value: 6.8309999999999995
1469
+ - type: precision_at_20
1470
+ value: 3.978
1471
+ - type: precision_at_30
1472
+ value: 2.827
1473
+ - type: precision_at_50
1474
+ value: 1.807
1475
+ - type: precision_at_70
1476
+ value: 1.336
1477
+ - type: precision_at_100
1478
+ value: 0.964
1479
+ - type: precision_at_200
1480
+ value: 0.502
1481
+ - type: precision_at_300
1482
+ value: 0.34099999999999997
1483
+ - type: precision_at_500
1484
+ value: 0.208
1485
+ - type: precision_at_700
1486
+ value: 0.15
1487
+ - type: precision_at_1000
1488
+ value: 0.105
1489
+ - type: mrr_at_1
1490
+ value: 24.398
1491
+ - type: mrr_at_2
1492
+ value: 30.351
1493
+ - type: mrr_at_3
1494
+ value: 33.001000000000005
1495
+ - type: mrr_at_5
1496
+ value: 35.228
1497
+ - type: mrr_at_7
1498
+ value: 36.223
1499
+ - type: mrr_at_10
1500
+ value: 36.903999999999996
1501
+ - type: mrr_at_20
1502
+ value: 37.631
1503
+ - type: mrr_at_30
1504
+ value: 37.830000000000005
1505
+ - type: mrr_at_50
1506
+ value: 37.955
1507
+ - type: mrr_at_70
1508
+ value: 38.003
1509
+ - type: mrr_at_100
1510
+ value: 38.033
1511
+ - type: mrr_at_200
1512
+ value: 38.059
1513
+ - type: mrr_at_300
1514
+ value: 38.066
1515
+ - type: mrr_at_500
1516
+ value: 38.068999999999996
1517
+ - type: mrr_at_700
1518
+ value: 38.07
1519
+ - type: mrr_at_1000
1520
+ value: 38.07
1521
+ - task:
1522
+ type: Classification
1523
+ dataset:
1524
+ type: mteb/mtop_domain
1525
+ name: MTEB MTOPDomainClassification (en)
1526
+ config: en
1527
+ split: test
1528
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1529
+ metrics:
1530
+ - type: accuracy
1531
+ value: 96.35658914728683
1532
+ - type: f1
1533
+ value: 96.15039630903114
1534
+ - task:
1535
+ type: Classification
1536
+ dataset:
1537
+ type: mteb/mtop_intent
1538
+ name: MTEB MTOPIntentClassification (en)
1539
+ config: en
1540
+ split: test
1541
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1542
+ metrics:
1543
+ - type: accuracy
1544
+ value: 86.29730962152303
1545
+ - type: f1
1546
+ value: 71.12166316567485
1547
+ - task:
1548
+ type: Classification
1549
+ dataset:
1550
+ type: mteb/amazon_massive_intent
1551
+ name: MTEB MassiveIntentClassification (en)
1552
+ config: en
1553
+ split: test
1554
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1555
+ metrics:
1556
+ - type: accuracy
1557
+ value: 79.98991257565568
1558
+ - type: f1
1559
+ value: 77.41680115095276
1560
+ - task:
1561
+ type: Classification
1562
+ dataset:
1563
+ type: mteb/amazon_massive_scenario
1564
+ name: MTEB MassiveScenarioClassification (en)
1565
+ config: en
1566
+ split: test
1567
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1568
+ metrics:
1569
+ - type: accuracy
1570
+ value: 82.1990585070612
1571
+ - type: f1
1572
+ value: 82.23719179179362
1573
+ - task:
1574
+ type: Clustering
1575
+ dataset:
1576
+ type: mteb/medrxiv-clustering-p2p
1577
+ name: MTEB MedrxivClusteringP2P
1578
+ config: default
1579
+ split: test
1580
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1581
+ metrics:
1582
+ - type: v_measure
1583
+ value: 40.03019554933584
1584
+ - task:
1585
+ type: Clustering
1586
+ dataset:
1587
+ type: mteb/medrxiv-clustering-s2s
1588
+ name: MTEB MedrxivClusteringS2S
1589
+ config: default
1590
+ split: test
1591
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1592
+ metrics:
1593
+ - type: v_measure
1594
+ value: 38.999760551497815
1595
+ - task:
1596
+ type: Reranking
1597
+ dataset:
1598
+ type: mteb/mind_small
1599
+ name: MTEB MindSmallReranking
1600
+ config: default
1601
+ split: test
1602
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1603
+ metrics:
1604
+ - type: map
1605
+ value: 32.72383151953079
1606
+ - type: mrr
1607
+ value: 33.93989699030721
1608
+ - task:
1609
+ type: Retrieval
1610
+ dataset:
1611
+ type: nfcorpus
1612
+ name: MTEB NFCorpus
1613
+ config: default
1614
+ split: test
1615
+ revision: None
1616
+ metrics:
1617
+ - type: ndcg_at_1
1618
+ value: 51.858000000000004
1619
+ - type: ndcg_at_2
1620
+ value: 49.675999999999995
1621
+ - type: ndcg_at_3
1622
+ value: 47.519
1623
+ - type: ndcg_at_5
1624
+ value: 45.198
1625
+ - type: ndcg_at_7
1626
+ value: 43.504
1627
+ - type: ndcg_at_10
1628
+ value: 41.88
1629
+ - type: ndcg_at_20
1630
+ value: 39.122
1631
+ - type: ndcg_at_30
1632
+ value: 37.95
1633
+ - type: ndcg_at_50
1634
+ value: 37.602999999999994
1635
+ - type: ndcg_at_70
1636
+ value: 37.836
1637
+ - type: ndcg_at_100
1638
+ value: 38.493
1639
+ - type: ndcg_at_200
1640
+ value: 40.187
1641
+ - type: ndcg_at_300
1642
+ value: 41.524
1643
+ - type: ndcg_at_500
1644
+ value: 43.657000000000004
1645
+ - type: ndcg_at_700
1646
+ value: 45.234
1647
+ - type: ndcg_at_1000
1648
+ value: 47.047
1649
+ - type: map_at_1
1650
+ value: 6.392
1651
+ - type: map_at_2
1652
+ value: 10.113
1653
+ - type: map_at_3
1654
+ value: 11.543000000000001
1655
+ - type: map_at_5
1656
+ value: 13.729
1657
+ - type: map_at_7
1658
+ value: 14.985000000000001
1659
+ - type: map_at_10
1660
+ value: 16.217000000000002
1661
+ - type: map_at_20
1662
+ value: 18.106
1663
+ - type: map_at_30
1664
+ value: 18.878
1665
+ - type: map_at_50
1666
+ value: 19.822
1667
+ - type: map_at_70
1668
+ value: 20.352999999999998
1669
+ - type: map_at_100
1670
+ value: 20.827
1671
+ - type: map_at_200
1672
+ value: 21.512
1673
+ - type: map_at_300
1674
+ value: 21.826
1675
+ - type: map_at_500
1676
+ value: 22.155
1677
+ - type: map_at_700
1678
+ value: 22.349
1679
+ - type: map_at_1000
1680
+ value: 22.531000000000002
1681
+ - type: recall_at_1
1682
+ value: 6.392
1683
+ - type: recall_at_2
1684
+ value: 11.215
1685
+ - type: recall_at_3
1686
+ value: 13.231000000000002
1687
+ - type: recall_at_5
1688
+ value: 16.66
1689
+ - type: recall_at_7
1690
+ value: 18.802
1691
+ - type: recall_at_10
1692
+ value: 21.185000000000002
1693
+ - type: recall_at_20
1694
+ value: 25.35
1695
+ - type: recall_at_30
1696
+ value: 27.91
1697
+ - type: recall_at_50
1698
+ value: 32.845
1699
+ - type: recall_at_70
1700
+ value: 35.789
1701
+ - type: recall_at_100
1702
+ value: 39.247
1703
+ - type: recall_at_200
1704
+ value: 46.655
1705
+ - type: recall_at_300
1706
+ value: 51.43299999999999
1707
+ - type: recall_at_500
1708
+ value: 59.472
1709
+ - type: recall_at_700
1710
+ value: 64.742
1711
+ - type: recall_at_1000
1712
+ value: 70.97099999999999
1713
+ - type: precision_at_1
1714
+ value: 53.559999999999995
1715
+ - type: precision_at_2
1716
+ value: 48.762
1717
+ - type: precision_at_3
1718
+ value: 44.169000000000004
1719
+ - type: precision_at_5
1720
+ value: 39.071
1721
+ - type: precision_at_7
1722
+ value: 35.161
1723
+ - type: precision_at_10
1724
+ value: 31.238
1725
+ - type: precision_at_20
1726
+ value: 23.064999999999998
1727
+ - type: precision_at_30
1728
+ value: 18.844
1729
+ - type: precision_at_50
1730
+ value: 14.601
1731
+ - type: precision_at_70
1732
+ value: 12.088000000000001
1733
+ - type: precision_at_100
1734
+ value: 9.844999999999999
1735
+ - type: precision_at_200
1736
+ value: 6.358
1737
+ - type: precision_at_300
1738
+ value: 4.915
1739
+ - type: precision_at_500
1740
+ value: 3.531
1741
+ - type: precision_at_700
1742
+ value: 2.8649999999999998
1743
+ - type: precision_at_1000
1744
+ value: 2.289
1745
+ - type: mrr_at_1
1746
+ value: 54.17999999999999
1747
+ - type: mrr_at_2
1748
+ value: 59.288
1749
+ - type: mrr_at_3
1750
+ value: 60.836
1751
+ - type: mrr_at_5
1752
+ value: 62.275999999999996
1753
+ - type: mrr_at_7
1754
+ value: 62.688
1755
+ - type: mrr_at_10
1756
+ value: 62.865
1757
+ - type: mrr_at_20
1758
+ value: 63.11
1759
+ - type: mrr_at_30
1760
+ value: 63.193999999999996
1761
+ - type: mrr_at_50
1762
+ value: 63.258
1763
+ - type: mrr_at_70
1764
+ value: 63.278
1765
+ - type: mrr_at_100
1766
+ value: 63.297000000000004
1767
+ - type: mrr_at_200
1768
+ value: 63.315999999999995
1769
+ - type: mrr_at_300
1770
+ value: 63.318
1771
+ - type: mrr_at_500
1772
+ value: 63.32299999999999
1773
+ - type: mrr_at_700
1774
+ value: 63.324000000000005
1775
+ - type: mrr_at_1000
1776
+ value: 63.324999999999996
1777
+ - task:
1778
+ type: Retrieval
1779
+ dataset:
1780
+ type: nq
1781
+ name: MTEB NQ
1782
+ config: default
1783
+ split: test
1784
+ revision: None
1785
+ metrics:
1786
+ - type: ndcg_at_1
1787
+ value: 50.897999999999996
1788
+ - type: ndcg_at_2
1789
+ value: 59.126
1790
+ - type: ndcg_at_3
1791
+ value: 63.093999999999994
1792
+ - type: ndcg_at_5
1793
+ value: 67.197
1794
+ - type: ndcg_at_7
1795
+ value: 68.719
1796
+ - type: ndcg_at_10
1797
+ value: 69.915
1798
+ - type: ndcg_at_20
1799
+ value: 71.229
1800
+ - type: ndcg_at_30
1801
+ value: 71.667
1802
+ - type: ndcg_at_50
1803
+ value: 71.98
1804
+ - type: ndcg_at_70
1805
+ value: 72.127
1806
+ - type: ndcg_at_100
1807
+ value: 72.217
1808
+ - type: ndcg_at_200
1809
+ value: 72.319
1810
+ - type: ndcg_at_300
1811
+ value: 72.347
1812
+ - type: ndcg_at_500
1813
+ value: 72.37
1814
+ - type: ndcg_at_700
1815
+ value: 72.379
1816
+ - type: ndcg_at_1000
1817
+ value: 72.381
1818
+ - type: map_at_1
1819
+ value: 45.297
1820
+ - type: map_at_2
1821
+ value: 55.596000000000004
1822
+ - type: map_at_3
1823
+ value: 58.724
1824
+ - type: map_at_5
1825
+ value: 61.387
1826
+ - type: map_at_7
1827
+ value: 62.173
1828
+ - type: map_at_10
1829
+ value: 62.69
1830
+ - type: map_at_20
1831
+ value: 63.125
1832
+ - type: map_at_30
1833
+ value: 63.223
1834
+ - type: map_at_50
1835
+ value: 63.27700000000001
1836
+ - type: map_at_70
1837
+ value: 63.295
1838
+ - type: map_at_100
1839
+ value: 63.303
1840
+ - type: map_at_200
1841
+ value: 63.31
1842
+ - type: map_at_300
1843
+ value: 63.31099999999999
1844
+ - type: map_at_500
1845
+ value: 63.312000000000005
1846
+ - type: map_at_700
1847
+ value: 63.312000000000005
1848
+ - type: map_at_1000
1849
+ value: 63.312000000000005
1850
+ - type: recall_at_1
1851
+ value: 45.297
1852
+ - type: recall_at_2
1853
+ value: 63.866
1854
+ - type: recall_at_3
1855
+ value: 71.898
1856
+ - type: recall_at_5
1857
+ value: 81.16600000000001
1858
+ - type: recall_at_7
1859
+ value: 85.301
1860
+ - type: recall_at_10
1861
+ value: 88.94800000000001
1862
+ - type: recall_at_20
1863
+ value: 93.719
1864
+ - type: recall_at_30
1865
+ value: 95.628
1866
+ - type: recall_at_50
1867
+ value: 97.14699999999999
1868
+ - type: recall_at_70
1869
+ value: 97.955
1870
+ - type: recall_at_100
1871
+ value: 98.48599999999999
1872
+ - type: recall_at_200
1873
+ value: 99.157
1874
+ - type: recall_at_300
1875
+ value: 99.355
1876
+ - type: recall_at_500
1877
+ value: 99.53699999999999
1878
+ - type: recall_at_700
1879
+ value: 99.62299999999999
1880
+ - type: recall_at_1000
1881
+ value: 99.638
1882
+ - type: precision_at_1
1883
+ value: 50.897999999999996
1884
+ - type: precision_at_2
1885
+ value: 36.703
1886
+ - type: precision_at_3
1887
+ value: 27.926000000000002
1888
+ - type: precision_at_5
1889
+ value: 19.276
1890
+ - type: precision_at_7
1891
+ value: 14.533999999999999
1892
+ - type: precision_at_10
1893
+ value: 10.678
1894
+ - type: precision_at_20
1895
+ value: 5.663
1896
+ - type: precision_at_30
1897
+ value: 3.8600000000000003
1898
+ - type: precision_at_50
1899
+ value: 2.358
1900
+ - type: precision_at_70
1901
+ value: 1.7000000000000002
1902
+ - type: precision_at_100
1903
+ value: 1.198
1904
+ - type: precision_at_200
1905
+ value: 0.603
1906
+ - type: precision_at_300
1907
+ value: 0.40299999999999997
1908
+ - type: precision_at_500
1909
+ value: 0.242
1910
+ - type: precision_at_700
1911
+ value: 0.173
1912
+ - type: precision_at_1000
1913
+ value: 0.121
1914
+ - type: mrr_at_1
1915
+ value: 50.897999999999996
1916
+ - type: mrr_at_2
1917
+ value: 59.994
1918
+ - type: mrr_at_3
1919
+ value: 62.553000000000004
1920
+ - type: mrr_at_5
1921
+ value: 64.307
1922
+ - type: mrr_at_7
1923
+ value: 64.864
1924
+ - type: mrr_at_10
1925
+ value: 65.22200000000001
1926
+ - type: mrr_at_20
1927
+ value: 65.499
1928
+ - type: mrr_at_30
1929
+ value: 65.561
1930
+ - type: mrr_at_50
1931
+ value: 65.592
1932
+ - type: mrr_at_70
1933
+ value: 65.602
1934
+ - type: mrr_at_100
1935
+ value: 65.607
1936
+ - type: mrr_at_200
1937
+ value: 65.61099999999999
1938
+ - type: mrr_at_300
1939
+ value: 65.61200000000001
1940
+ - type: mrr_at_500
1941
+ value: 65.61200000000001
1942
+ - type: mrr_at_700
1943
+ value: 65.61200000000001
1944
+ - type: mrr_at_1000
1945
+ value: 65.61200000000001
1946
+ - task:
1947
+ type: Retrieval
1948
+ dataset:
1949
+ type: quora
1950
+ name: MTEB QuoraRetrieval
1951
+ config: default
1952
+ split: test
1953
+ revision: None
1954
+ metrics:
1955
+ - type: ndcg_at_1
1956
+ value: 82.96
1957
+ - type: ndcg_at_2
1958
+ value: 85.614
1959
+ - type: ndcg_at_3
1960
+ value: 87.19
1961
+ - type: ndcg_at_5
1962
+ value: 88.654
1963
+ - type: ndcg_at_7
1964
+ value: 89.287
1965
+ - type: ndcg_at_10
1966
+ value: 89.785
1967
+ - type: ndcg_at_20
1968
+ value: 90.384
1969
+ - type: ndcg_at_30
1970
+ value: 90.589
1971
+ - type: ndcg_at_50
1972
+ value: 90.738
1973
+ - type: ndcg_at_70
1974
+ value: 90.789
1975
+ - type: ndcg_at_100
1976
+ value: 90.824
1977
+ - type: ndcg_at_200
1978
+ value: 90.869
1979
+ - type: ndcg_at_300
1980
+ value: 90.881
1981
+ - type: ndcg_at_500
1982
+ value: 90.886
1983
+ - type: ndcg_at_700
1984
+ value: 90.889
1985
+ - type: ndcg_at_1000
1986
+ value: 90.889
1987
+ - type: map_at_1
1988
+ value: 72.152
1989
+ - type: map_at_2
1990
+ value: 80.818
1991
+ - type: map_at_3
1992
+ value: 83.462
1993
+ - type: map_at_5
1994
+ value: 85.286
1995
+ - type: map_at_7
1996
+ value: 85.921
1997
+ - type: map_at_10
1998
+ value: 86.334
1999
+ - type: map_at_20
2000
+ value: 86.737
2001
+ - type: map_at_30
2002
+ value: 86.847
2003
+ - type: map_at_50
2004
+ value: 86.911
2005
+ - type: map_at_70
2006
+ value: 86.932
2007
+ - type: map_at_100
2008
+ value: 86.943
2009
+ - type: map_at_200
2010
+ value: 86.953
2011
+ - type: map_at_300
2012
+ value: 86.955
2013
+ - type: map_at_500
2014
+ value: 86.956
2015
+ - type: map_at_700
2016
+ value: 86.956
2017
+ - type: map_at_1000
2018
+ value: 86.956
2019
+ - type: recall_at_1
2020
+ value: 72.152
2021
+ - type: recall_at_2
2022
+ value: 84.129
2023
+ - type: recall_at_3
2024
+ value: 88.87
2025
+ - type: recall_at_5
2026
+ value: 93.067
2027
+ - type: recall_at_7
2028
+ value: 94.882
2029
+ - type: recall_at_10
2030
+ value: 96.353
2031
+ - type: recall_at_20
2032
+ value: 98.26700000000001
2033
+ - type: recall_at_30
2034
+ value: 98.92999999999999
2035
+ - type: recall_at_50
2036
+ value: 99.441
2037
+ - type: recall_at_70
2038
+ value: 99.619
2039
+ - type: recall_at_100
2040
+ value: 99.748
2041
+ - type: recall_at_200
2042
+ value: 99.911
2043
+ - type: recall_at_300
2044
+ value: 99.956
2045
+ - type: recall_at_500
2046
+ value: 99.98
2047
+ - type: recall_at_700
2048
+ value: 99.991
2049
+ - type: recall_at_1000
2050
+ value: 99.996
2051
+ - type: precision_at_1
2052
+ value: 82.96
2053
+ - type: precision_at_2
2054
+ value: 52.175000000000004
2055
+ - type: precision_at_3
2056
+ value: 38.223
2057
+ - type: precision_at_5
2058
+ value: 25.056
2059
+ - type: precision_at_7
2060
+ value: 18.717
2061
+ - type: precision_at_10
2062
+ value: 13.614999999999998
2063
+ - type: precision_at_20
2064
+ value: 7.208
2065
+ - type: precision_at_30
2066
+ value: 4.928
2067
+ - type: precision_at_50
2068
+ value: 3.024
2069
+ - type: precision_at_70
2070
+ value: 2.183
2071
+ - type: precision_at_100
2072
+ value: 1.54
2073
+ - type: precision_at_200
2074
+ value: 0.779
2075
+ - type: precision_at_300
2076
+ value: 0.521
2077
+ - type: precision_at_500
2078
+ value: 0.313
2079
+ - type: precision_at_700
2080
+ value: 0.22399999999999998
2081
+ - type: precision_at_1000
2082
+ value: 0.157
2083
+ - type: mrr_at_1
2084
+ value: 82.96
2085
+ - type: mrr_at_2
2086
+ value: 87.005
2087
+ - type: mrr_at_3
2088
+ value: 88.07199999999999
2089
+ - type: mrr_at_5
2090
+ value: 88.634
2091
+ - type: mrr_at_7
2092
+ value: 88.793
2093
+ - type: mrr_at_10
2094
+ value: 88.87899999999999
2095
+ - type: mrr_at_20
2096
+ value: 88.94999999999999
2097
+ - type: mrr_at_30
2098
+ value: 88.96
2099
+ - type: mrr_at_50
2100
+ value: 88.965
2101
+ - type: mrr_at_70
2102
+ value: 88.966
2103
+ - type: mrr_at_100
2104
+ value: 88.967
2105
+ - type: mrr_at_200
2106
+ value: 88.967
2107
+ - type: mrr_at_300
2108
+ value: 88.967
2109
+ - type: mrr_at_500
2110
+ value: 88.967
2111
+ - type: mrr_at_700
2112
+ value: 88.967
2113
+ - type: mrr_at_1000
2114
+ value: 88.967
2115
+ - task:
2116
+ type: Clustering
2117
+ dataset:
2118
+ type: mteb/reddit-clustering
2119
+ name: MTEB RedditClustering
2120
+ config: default
2121
+ split: test
2122
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2123
+ metrics:
2124
+ - type: v_measure
2125
+ value: 59.90388554491155
2126
+ - task:
2127
+ type: Clustering
2128
+ dataset:
2129
+ type: mteb/reddit-clustering-p2p
2130
+ name: MTEB RedditClusteringP2P
2131
+ config: default
2132
+ split: test
2133
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
2134
+ metrics:
2135
+ - type: v_measure
2136
+ value: 67.64232539036783
2137
+ - task:
2138
+ type: Retrieval
2139
+ dataset:
2140
+ type: scidocs
2141
+ name: MTEB SCIDOCS
2142
+ config: default
2143
+ split: test
2144
+ revision: None
2145
+ metrics:
2146
+ - type: ndcg_at_1
2147
+ value: 22.6
2148
+ - type: ndcg_at_2
2149
+ value: 20.355999999999998
2150
+ - type: ndcg_at_3
2151
+ value: 18.536
2152
+ - type: ndcg_at_5
2153
+ value: 16.523
2154
+ - type: ndcg_at_7
2155
+ value: 17.979
2156
+ - type: ndcg_at_10
2157
+ value: 19.908
2158
+ - type: ndcg_at_20
2159
+ value: 22.887
2160
+ - type: ndcg_at_30
2161
+ value: 24.43
2162
+ - type: ndcg_at_50
2163
+ value: 25.959
2164
+ - type: ndcg_at_70
2165
+ value: 26.989
2166
+ - type: ndcg_at_100
2167
+ value: 27.977
2168
+ - type: ndcg_at_200
2169
+ value: 29.831000000000003
2170
+ - type: ndcg_at_300
2171
+ value: 30.787
2172
+ - type: ndcg_at_500
2173
+ value: 31.974999999999998
2174
+ - type: ndcg_at_700
2175
+ value: 32.554
2176
+ - type: ndcg_at_1000
2177
+ value: 33.277
2178
+ - type: map_at_1
2179
+ value: 4.593
2180
+ - type: map_at_2
2181
+ value: 6.923
2182
+ - type: map_at_3
2183
+ value: 8.3
2184
+ - type: map_at_5
2185
+ value: 10.072000000000001
2186
+ - type: map_at_7
2187
+ value: 10.782
2188
+ - type: map_at_10
2189
+ value: 11.72
2190
+ - type: map_at_20
2191
+ value: 12.838
2192
+ - type: map_at_30
2193
+ value: 13.257
2194
+ - type: map_at_50
2195
+ value: 13.569
2196
+ - type: map_at_70
2197
+ value: 13.733
2198
+ - type: map_at_100
2199
+ value: 13.858999999999998
2200
+ - type: map_at_200
2201
+ value: 14.018
2202
+ - type: map_at_300
2203
+ value: 14.072999999999999
2204
+ - type: map_at_500
2205
+ value: 14.126
2206
+ - type: map_at_700
2207
+ value: 14.145
2208
+ - type: map_at_1000
2209
+ value: 14.161999999999999
2210
+ - type: recall_at_1
2211
+ value: 4.593
2212
+ - type: recall_at_2
2213
+ value: 7.997999999999999
2214
+ - type: recall_at_3
2215
+ value: 10.563
2216
+ - type: recall_at_5
2217
+ value: 14.907
2218
+ - type: recall_at_7
2219
+ value: 17.4
2220
+ - type: recall_at_10
2221
+ value: 21.18
2222
+ - type: recall_at_20
2223
+ value: 28.144999999999996
2224
+ - type: recall_at_30
2225
+ value: 32.462
2226
+ - type: recall_at_50
2227
+ value: 37.267
2228
+ - type: recall_at_70
2229
+ value: 40.875
2230
+ - type: recall_at_100
2231
+ value: 44.641999999999996
2232
+ - type: recall_at_200
2233
+ value: 52.573
2234
+ - type: recall_at_300
2235
+ value: 57.089999999999996
2236
+ - type: recall_at_500
2237
+ value: 63.14300000000001
2238
+ - type: recall_at_700
2239
+ value: 66.313
2240
+ - type: recall_at_1000
2241
+ value: 70.458
2242
+ - type: precision_at_1
2243
+ value: 22.6
2244
+ - type: precision_at_2
2245
+ value: 19.7
2246
+ - type: precision_at_3
2247
+ value: 17.333000000000002
2248
+ - type: precision_at_5
2249
+ value: 14.680000000000001
2250
+ - type: precision_at_7
2251
+ value: 12.243
2252
+ - type: precision_at_10
2253
+ value: 10.440000000000001
2254
+ - type: precision_at_20
2255
+ value: 6.944999999999999
2256
+ - type: precision_at_30
2257
+ value: 5.333
2258
+ - type: precision_at_50
2259
+ value: 3.678
2260
+ - type: precision_at_70
2261
+ value: 2.881
2262
+ - type: precision_at_100
2263
+ value: 2.2030000000000003
2264
+ - type: precision_at_200
2265
+ value: 1.295
2266
+ - type: precision_at_300
2267
+ value: 0.9369999999999999
2268
+ - type: precision_at_500
2269
+ value: 0.622
2270
+ - type: precision_at_700
2271
+ value: 0.466
2272
+ - type: precision_at_1000
2273
+ value: 0.347
2274
+ - type: mrr_at_1
2275
+ value: 22.6
2276
+ - type: mrr_at_2
2277
+ value: 27.900000000000002
2278
+ - type: mrr_at_3
2279
+ value: 30.067
2280
+ - type: mrr_at_5
2281
+ value: 32.207
2282
+ - type: mrr_at_7
2283
+ value: 33.004
2284
+ - type: mrr_at_10
2285
+ value: 33.596
2286
+ - type: mrr_at_20
2287
+ value: 34.268
2288
+ - type: mrr_at_30
2289
+ value: 34.492
2290
+ - type: mrr_at_50
2291
+ value: 34.628
2292
+ - type: mrr_at_70
2293
+ value: 34.681
2294
+ - type: mrr_at_100
2295
+ value: 34.717
2296
+ - type: mrr_at_200
2297
+ value: 34.757
2298
+ - type: mrr_at_300
2299
+ value: 34.768
2300
+ - type: mrr_at_500
2301
+ value: 34.772
2302
+ - type: mrr_at_700
2303
+ value: 34.774
2304
+ - type: mrr_at_1000
2305
+ value: 34.775
2306
+ - task:
2307
+ type: STS
2308
+ dataset:
2309
+ type: mteb/sickr-sts
2310
+ name: MTEB SICK-R
2311
+ config: default
2312
+ split: test
2313
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2314
+ metrics:
2315
+ - type: cos_sim_pearson
2316
+ value: 86.90122745229677
2317
+ - type: cos_sim_spearman
2318
+ value: 82.92294737327579
2319
+ - type: euclidean_pearson
2320
+ value: 84.08979655773187
2321
+ - type: euclidean_spearman
2322
+ value: 82.92294657285412
2323
+ - type: manhattan_pearson
2324
+ value: 84.09347480531832
2325
+ - type: manhattan_spearman
2326
+ value: 82.91564613948087
2327
+ - task:
2328
+ type: STS
2329
+ dataset:
2330
+ type: mteb/sts12-sts
2331
+ name: MTEB STS12
2332
+ config: default
2333
+ split: test
2334
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2335
+ metrics:
2336
+ - type: cos_sim_pearson
2337
+ value: 87.01218713698583
2338
+ - type: cos_sim_spearman
2339
+ value: 79.46865215168464
2340
+ - type: euclidean_pearson
2341
+ value: 83.22621889891909
2342
+ - type: euclidean_spearman
2343
+ value: 79.46853821709514
2344
+ - type: manhattan_pearson
2345
+ value: 83.69962580788805
2346
+ - type: manhattan_spearman
2347
+ value: 79.9561593356932
2348
+ - task:
2349
+ type: STS
2350
+ dataset:
2351
+ type: mteb/sts13-sts
2352
+ name: MTEB STS13
2353
+ config: default
2354
+ split: test
2355
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2356
+ metrics:
2357
+ - type: cos_sim_pearson
2358
+ value: 88.98438696342964
2359
+ - type: cos_sim_spearman
2360
+ value: 89.15419511870839
2361
+ - type: euclidean_pearson
2362
+ value: 88.49646141802894
2363
+ - type: euclidean_spearman
2364
+ value: 89.15419503946019
2365
+ - type: manhattan_pearson
2366
+ value: 88.6420585616327
2367
+ - type: manhattan_spearman
2368
+ value: 89.42648950757743
2369
+ - task:
2370
+ type: STS
2371
+ dataset:
2372
+ type: mteb/sts14-sts
2373
+ name: MTEB STS14
2374
+ config: default
2375
+ split: test
2376
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2377
+ metrics:
2378
+ - type: cos_sim_pearson
2379
+ value: 87.30772547759544
2380
+ - type: cos_sim_spearman
2381
+ value: 84.93199878424691
2382
+ - type: euclidean_pearson
2383
+ value: 86.16266630395455
2384
+ - type: euclidean_spearman
2385
+ value: 84.93198798543634
2386
+ - type: manhattan_pearson
2387
+ value: 86.14285723189803
2388
+ - type: manhattan_spearman
2389
+ value: 85.0361672522687
2390
+ - task:
2391
+ type: STS
2392
+ dataset:
2393
+ type: mteb/sts15-sts
2394
+ name: MTEB STS15
2395
+ config: default
2396
+ split: test
2397
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2398
+ metrics:
2399
+ - type: cos_sim_pearson
2400
+ value: 90.21342071197127
2401
+ - type: cos_sim_spearman
2402
+ value: 90.7407512744838
2403
+ - type: euclidean_pearson
2404
+ value: 90.1517933113061
2405
+ - type: euclidean_spearman
2406
+ value: 90.74075125431919
2407
+ - type: manhattan_pearson
2408
+ value: 90.17963034676193
2409
+ - type: manhattan_spearman
2410
+ value: 90.88999275865135
2411
+ - task:
2412
+ type: STS
2413
+ dataset:
2414
+ type: mteb/sts16-sts
2415
+ name: MTEB STS16
2416
+ config: default
2417
+ split: test
2418
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2419
+ metrics:
2420
+ - type: cos_sim_pearson
2421
+ value: 86.82518054100498
2422
+ - type: cos_sim_spearman
2423
+ value: 87.81570533154735
2424
+ - type: euclidean_pearson
2425
+ value: 86.91684561573618
2426
+ - type: euclidean_spearman
2427
+ value: 87.81570533154735
2428
+ - type: manhattan_pearson
2429
+ value: 86.98311935744032
2430
+ - type: manhattan_spearman
2431
+ value: 87.9594667151966
2432
+ - task:
2433
+ type: STS
2434
+ dataset:
2435
+ type: mteb/sts17-crosslingual-sts
2436
+ name: MTEB STS17 (en-en)
2437
+ config: en-en
2438
+ split: test
2439
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2440
+ metrics:
2441
+ - type: cos_sim_pearson
2442
+ value: 92.09578436612053
2443
+ - type: cos_sim_spearman
2444
+ value: 92.01519349090438
2445
+ - type: euclidean_pearson
2446
+ value: 92.07113635890894
2447
+ - type: euclidean_spearman
2448
+ value: 92.01519349090438
2449
+ - type: manhattan_pearson
2450
+ value: 91.89343820765625
2451
+ - type: manhattan_spearman
2452
+ value: 91.7443476810177
2453
+ - task:
2454
+ type: STS
2455
+ dataset:
2456
+ type: mteb/sts22-crosslingual-sts
2457
+ name: MTEB STS22 (en)
2458
+ config: en
2459
+ split: test
2460
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2461
+ metrics:
2462
+ - type: cos_sim_pearson
2463
+ value: 69.29997751464549
2464
+ - type: cos_sim_spearman
2465
+ value: 68.36425436812782
2466
+ - type: euclidean_pearson
2467
+ value: 69.81381677661783
2468
+ - type: euclidean_spearman
2469
+ value: 68.36425436812782
2470
+ - type: manhattan_pearson
2471
+ value: 69.92823397008026
2472
+ - type: manhattan_spearman
2473
+ value: 68.35770640039254
2474
+ - task:
2475
+ type: STS
2476
+ dataset:
2477
+ type: mteb/stsbenchmark-sts
2478
+ name: MTEB STSBenchmark
2479
+ config: default
2480
+ split: test
2481
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2482
+ metrics:
2483
+ - type: cos_sim_pearson
2484
+ value: 88.39126315452359
2485
+ - type: cos_sim_spearman
2486
+ value: 88.99708463265337
2487
+ - type: euclidean_pearson
2488
+ value: 88.60793820038607
2489
+ - type: euclidean_spearman
2490
+ value: 88.99708463265337
2491
+ - type: manhattan_pearson
2492
+ value: 88.69860633571047
2493
+ - type: manhattan_spearman
2494
+ value: 89.20094593888012
2495
+ - task:
2496
+ type: Reranking
2497
+ dataset:
2498
+ type: mteb/scidocs-reranking
2499
+ name: MTEB SciDocsRR
2500
+ config: default
2501
+ split: test
2502
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2503
+ metrics:
2504
+ - type: map
2505
+ value: 86.58028062818582
2506
+ - type: mrr
2507
+ value: 96.53586790841693
2508
+ - task:
2509
+ type: Retrieval
2510
+ dataset:
2511
+ type: scifact
2512
+ name: MTEB SciFact
2513
+ config: default
2514
+ split: test
2515
+ revision: None
2516
+ metrics:
2517
+ - type: ndcg_at_1
2518
+ value: 66.333
2519
+ - type: ndcg_at_2
2520
+ value: 70.655
2521
+ - type: ndcg_at_3
2522
+ value: 72.801
2523
+ - type: ndcg_at_5
2524
+ value: 75.793
2525
+ - type: ndcg_at_7
2526
+ value: 76.946
2527
+ - type: ndcg_at_10
2528
+ value: 77.66199999999999
2529
+ - type: ndcg_at_20
2530
+ value: 78.786
2531
+ - type: ndcg_at_30
2532
+ value: 79.066
2533
+ - type: ndcg_at_50
2534
+ value: 79.255
2535
+ - type: ndcg_at_70
2536
+ value: 79.423
2537
+ - type: ndcg_at_100
2538
+ value: 79.476
2539
+ - type: ndcg_at_200
2540
+ value: 79.65299999999999
2541
+ - type: ndcg_at_300
2542
+ value: 79.696
2543
+ - type: ndcg_at_500
2544
+ value: 79.73599999999999
2545
+ - type: ndcg_at_700
2546
+ value: 79.77199999999999
2547
+ - type: ndcg_at_1000
2548
+ value: 79.77199999999999
2549
+ - type: map_at_1
2550
+ value: 63.383
2551
+ - type: map_at_2
2552
+ value: 68.144
2553
+ - type: map_at_3
2554
+ value: 70.19800000000001
2555
+ - type: map_at_5
2556
+ value: 72.38
2557
+ - type: map_at_7
2558
+ value: 72.955
2559
+ - type: map_at_10
2560
+ value: 73.312
2561
+ - type: map_at_20
2562
+ value: 73.678
2563
+ - type: map_at_30
2564
+ value: 73.72800000000001
2565
+ - type: map_at_50
2566
+ value: 73.75500000000001
2567
+ - type: map_at_70
2568
+ value: 73.771
2569
+ - type: map_at_100
2570
+ value: 73.776
2571
+ - type: map_at_200
2572
+ value: 73.783
2573
+ - type: map_at_300
2574
+ value: 73.784
2575
+ - type: map_at_500
2576
+ value: 73.785
2577
+ - type: map_at_700
2578
+ value: 73.786
2579
+ - type: map_at_1000
2580
+ value: 73.786
2581
+ - type: recall_at_1
2582
+ value: 63.383
2583
+ - type: recall_at_2
2584
+ value: 72.283
2585
+ - type: recall_at_3
2586
+ value: 77.183
2587
+ - type: recall_at_5
2588
+ value: 84.56099999999999
2589
+ - type: recall_at_7
2590
+ value: 87.67200000000001
2591
+ - type: recall_at_10
2592
+ value: 89.822
2593
+ - type: recall_at_20
2594
+ value: 94.0
2595
+ - type: recall_at_30
2596
+ value: 95.333
2597
+ - type: recall_at_50
2598
+ value: 96.333
2599
+ - type: recall_at_70
2600
+ value: 97.333
2601
+ - type: recall_at_100
2602
+ value: 97.667
2603
+ - type: recall_at_200
2604
+ value: 99.0
2605
+ - type: recall_at_300
2606
+ value: 99.333
2607
+ - type: recall_at_500
2608
+ value: 99.667
2609
+ - type: recall_at_700
2610
+ value: 100.0
2611
+ - type: recall_at_1000
2612
+ value: 100.0
2613
+ - type: precision_at_1
2614
+ value: 66.333
2615
+ - type: precision_at_2
2616
+ value: 38.667
2617
+ - type: precision_at_3
2618
+ value: 28.111000000000004
2619
+ - type: precision_at_5
2620
+ value: 18.933
2621
+ - type: precision_at_7
2622
+ value: 14.094999999999999
2623
+ - type: precision_at_10
2624
+ value: 10.167
2625
+ - type: precision_at_20
2626
+ value: 5.35
2627
+ - type: precision_at_30
2628
+ value: 3.611
2629
+ - type: precision_at_50
2630
+ value: 2.1870000000000003
2631
+ - type: precision_at_70
2632
+ value: 1.576
2633
+ - type: precision_at_100
2634
+ value: 1.107
2635
+ - type: precision_at_200
2636
+ value: 0.5599999999999999
2637
+ - type: precision_at_300
2638
+ value: 0.374
2639
+ - type: precision_at_500
2640
+ value: 0.22499999999999998
2641
+ - type: precision_at_700
2642
+ value: 0.161
2643
+ - type: precision_at_1000
2644
+ value: 0.11299999999999999
2645
+ - type: mrr_at_1
2646
+ value: 66.333
2647
+ - type: mrr_at_2
2648
+ value: 70.833
2649
+ - type: mrr_at_3
2650
+ value: 72.167
2651
+ - type: mrr_at_5
2652
+ value: 73.6
2653
+ - type: mrr_at_7
2654
+ value: 74.084
2655
+ - type: mrr_at_10
2656
+ value: 74.283
2657
+ - type: mrr_at_20
2658
+ value: 74.54499999999999
2659
+ - type: mrr_at_30
2660
+ value: 74.59599999999999
2661
+ - type: mrr_at_50
2662
+ value: 74.622
2663
+ - type: mrr_at_70
2664
+ value: 74.639
2665
+ - type: mrr_at_100
2666
+ value: 74.643
2667
+ - type: mrr_at_200
2668
+ value: 74.65
2669
+ - type: mrr_at_300
2670
+ value: 74.652
2671
+ - type: mrr_at_500
2672
+ value: 74.653
2673
+ - type: mrr_at_700
2674
+ value: 74.653
2675
+ - type: mrr_at_1000
2676
+ value: 74.653
2677
+ - task:
2678
+ type: PairClassification
2679
+ dataset:
2680
+ type: mteb/sprintduplicatequestions-pairclassification
2681
+ name: MTEB SprintDuplicateQuestions
2682
+ config: default
2683
+ split: test
2684
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2685
+ metrics:
2686
+ - type: cos_sim_accuracy
2687
+ value: 99.84554455445544
2688
+ - type: cos_sim_ap
2689
+ value: 96.31178339136798
2690
+ - type: cos_sim_f1
2691
+ value: 92.1921921921922
2692
+ - type: cos_sim_precision
2693
+ value: 92.28456913827655
2694
+ - type: cos_sim_recall
2695
+ value: 92.10000000000001
2696
+ - type: dot_accuracy
2697
+ value: 99.84554455445544
2698
+ - type: dot_ap
2699
+ value: 96.31178339136797
2700
+ - type: dot_f1
2701
+ value: 92.1921921921922
2702
+ - type: dot_precision
2703
+ value: 92.28456913827655
2704
+ - type: dot_recall
2705
+ value: 92.10000000000001
2706
+ - type: euclidean_accuracy
2707
+ value: 99.84554455445544
2708
+ - type: euclidean_ap
2709
+ value: 96.31178339136798
2710
+ - type: euclidean_f1
2711
+ value: 92.1921921921922
2712
+ - type: euclidean_precision
2713
+ value: 92.28456913827655
2714
+ - type: euclidean_recall
2715
+ value: 92.10000000000001
2716
+ - type: manhattan_accuracy
2717
+ value: 99.84752475247525
2718
+ - type: manhattan_ap
2719
+ value: 96.4591954606088
2720
+ - type: manhattan_f1
2721
+ value: 92.25352112676056
2722
+ - type: manhattan_precision
2723
+ value: 92.81376518218623
2724
+ - type: manhattan_recall
2725
+ value: 91.7
2726
+ - type: max_accuracy
2727
+ value: 99.84752475247525
2728
+ - type: max_ap
2729
+ value: 96.4591954606088
2730
+ - type: max_f1
2731
+ value: 92.25352112676056
2732
+ - task:
2733
+ type: Clustering
2734
+ dataset:
2735
+ type: mteb/stackexchange-clustering
2736
+ name: MTEB StackExchangeClustering
2737
+ config: default
2738
+ split: test
2739
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2740
+ metrics:
2741
+ - type: v_measure
2742
+ value: 74.24659759283294
2743
+ - task:
2744
+ type: Clustering
2745
+ dataset:
2746
+ type: mteb/stackexchange-clustering-p2p
2747
+ name: MTEB StackExchangeClusteringP2P
2748
+ config: default
2749
+ split: test
2750
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2751
+ metrics:
2752
+ - type: v_measure
2753
+ value: 46.77690051260451
2754
+ - task:
2755
+ type: Reranking
2756
+ dataset:
2757
+ type: mteb/stackoverflowdupquestions-reranking
2758
+ name: MTEB StackOverflowDupQuestions
2759
+ config: default
2760
+ split: test
2761
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2762
+ metrics:
2763
+ - type: map
2764
+ value: 55.68436757803185
2765
+ - type: mrr
2766
+ value: 56.82157711569475
2767
+ - task:
2768
+ type: Summarization
2769
+ dataset:
2770
+ type: mteb/summeval
2771
+ name: MTEB SummEval
2772
+ config: default
2773
+ split: test
2774
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2775
+ metrics:
2776
+ - type: cos_sim_pearson
2777
+ value: 31.652482405629843
2778
+ - type: cos_sim_spearman
2779
+ value: 31.16341822347735
2780
+ - type: dot_pearson
2781
+ value: 31.652479892699837
2782
+ - type: dot_spearman
2783
+ value: 31.16341822347735
2784
+ - task:
2785
+ type: Retrieval
2786
+ dataset:
2787
+ type: trec-covid
2788
+ name: MTEB TRECCOVID
2789
+ config: default
2790
+ split: test
2791
+ revision: None
2792
+ metrics:
2793
+ - type: ndcg_at_1
2794
+ value: 92.0
2795
+ - type: ndcg_at_2
2796
+ value: 90.839
2797
+ - type: ndcg_at_3
2798
+ value: 90.642
2799
+ - type: ndcg_at_5
2800
+ value: 90.348
2801
+ - type: ndcg_at_7
2802
+ value: 89.015
2803
+ - type: ndcg_at_10
2804
+ value: 87.599
2805
+ - type: ndcg_at_20
2806
+ value: 84.434
2807
+ - type: ndcg_at_30
2808
+ value: 81.655
2809
+ - type: ndcg_at_50
2810
+ value: 77.278
2811
+ - type: ndcg_at_70
2812
+ value: 73.957
2813
+ - type: ndcg_at_100
2814
+ value: 69.56
2815
+ - type: ndcg_at_200
2816
+ value: 60.724000000000004
2817
+ - type: ndcg_at_300
2818
+ value: 57.245000000000005
2819
+ - type: ndcg_at_500
2820
+ value: 56.316
2821
+ - type: ndcg_at_700
2822
+ value: 58.399
2823
+ - type: ndcg_at_1000
2824
+ value: 62.21600000000001
2825
+ - type: map_at_1
2826
+ value: 0.247
2827
+ - type: map_at_2
2828
+ value: 0.488
2829
+ - type: map_at_3
2830
+ value: 0.7230000000000001
2831
+ - type: map_at_5
2832
+ value: 1.204
2833
+ - type: map_at_7
2834
+ value: 1.6500000000000001
2835
+ - type: map_at_10
2836
+ value: 2.292
2837
+ - type: map_at_20
2838
+ value: 4.274
2839
+ - type: map_at_30
2840
+ value: 6.027
2841
+ - type: map_at_50
2842
+ value: 9.083
2843
+ - type: map_at_70
2844
+ value: 11.751000000000001
2845
+ - type: map_at_100
2846
+ value: 14.912
2847
+ - type: map_at_200
2848
+ value: 22.213
2849
+ - type: map_at_300
2850
+ value: 26.667999999999996
2851
+ - type: map_at_500
2852
+ value: 31.556
2853
+ - type: map_at_700
2854
+ value: 34.221000000000004
2855
+ - type: map_at_1000
2856
+ value: 36.443999999999996
2857
+ - type: recall_at_1
2858
+ value: 0.247
2859
+ - type: recall_at_2
2860
+ value: 0.49899999999999994
2861
+ - type: recall_at_3
2862
+ value: 0.742
2863
+ - type: recall_at_5
2864
+ value: 1.247
2865
+ - type: recall_at_7
2866
+ value: 1.722
2867
+ - type: recall_at_10
2868
+ value: 2.405
2869
+ - type: recall_at_20
2870
+ value: 4.583
2871
+ - type: recall_at_30
2872
+ value: 6.587999999999999
2873
+ - type: recall_at_50
2874
+ value: 10.188
2875
+ - type: recall_at_70
2876
+ value: 13.496
2877
+ - type: recall_at_100
2878
+ value: 17.578
2879
+ - type: recall_at_200
2880
+ value: 28.158
2881
+ - type: recall_at_300
2882
+ value: 35.532000000000004
2883
+ - type: recall_at_500
2884
+ value: 45.31
2885
+ - type: recall_at_700
2886
+ value: 51.822
2887
+ - type: recall_at_1000
2888
+ value: 58.53
2889
+ - type: precision_at_1
2890
+ value: 96.0
2891
+ - type: precision_at_2
2892
+ value: 96.0
2893
+ - type: precision_at_3
2894
+ value: 95.333
2895
+ - type: precision_at_5
2896
+ value: 94.8
2897
+ - type: precision_at_7
2898
+ value: 93.429
2899
+ - type: precision_at_10
2900
+ value: 91.4
2901
+ - type: precision_at_20
2902
+ value: 87.7
2903
+ - type: precision_at_30
2904
+ value: 84.867
2905
+ - type: precision_at_50
2906
+ value: 80.24
2907
+ - type: precision_at_70
2908
+ value: 76.371
2909
+ - type: precision_at_100
2910
+ value: 71.08
2911
+ - type: precision_at_200
2912
+ value: 59.4
2913
+ - type: precision_at_300
2914
+ value: 51.459999999999994
2915
+ - type: precision_at_500
2916
+ value: 40.644000000000005
2917
+ - type: precision_at_700
2918
+ value: 33.889
2919
+ - type: precision_at_1000
2920
+ value: 27.250000000000004
2921
+ - type: mrr_at_1
2922
+ value: 96.0
2923
+ - type: mrr_at_2
2924
+ value: 98.0
2925
+ - type: mrr_at_3
2926
+ value: 98.0
2927
+ - type: mrr_at_5
2928
+ value: 98.0
2929
+ - type: mrr_at_7
2930
+ value: 98.0
2931
+ - type: mrr_at_10
2932
+ value: 98.0
2933
+ - type: mrr_at_20
2934
+ value: 98.0
2935
+ - type: mrr_at_30
2936
+ value: 98.0
2937
+ - type: mrr_at_50
2938
+ value: 98.0
2939
+ - type: mrr_at_70
2940
+ value: 98.0
2941
+ - type: mrr_at_100
2942
+ value: 98.0
2943
+ - type: mrr_at_200
2944
+ value: 98.0
2945
+ - type: mrr_at_300
2946
+ value: 98.0
2947
+ - type: mrr_at_500
2948
+ value: 98.0
2949
+ - type: mrr_at_700
2950
+ value: 98.0
2951
+ - type: mrr_at_1000
2952
+ value: 98.0
2953
+ - task:
2954
+ type: Retrieval
2955
+ dataset:
2956
+ type: webis-touche2020
2957
+ name: MTEB Touche2020
2958
+ config: default
2959
+ split: test
2960
+ revision: None
2961
+ metrics:
2962
+ - type: ndcg_at_1
2963
+ value: 43.878
2964
+ - type: ndcg_at_2
2965
+ value: 37.956
2966
+ - type: ndcg_at_3
2967
+ value: 35.053
2968
+ - type: ndcg_at_5
2969
+ value: 32.59
2970
+ - type: ndcg_at_7
2971
+ value: 30.226
2972
+ - type: ndcg_at_10
2973
+ value: 29.005
2974
+ - type: ndcg_at_20
2975
+ value: 30.11
2976
+ - type: ndcg_at_30
2977
+ value: 32.019999999999996
2978
+ - type: ndcg_at_50
2979
+ value: 34.354
2980
+ - type: ndcg_at_70
2981
+ value: 36.665
2982
+ - type: ndcg_at_100
2983
+ value: 38.888
2984
+ - type: ndcg_at_200
2985
+ value: 43.435
2986
+ - type: ndcg_at_300
2987
+ value: 45.795
2988
+ - type: ndcg_at_500
2989
+ value: 48.699999999999996
2990
+ - type: ndcg_at_700
2991
+ value: 50.242
2992
+ - type: ndcg_at_1000
2993
+ value: 51.529
2994
+ - type: map_at_1
2995
+ value: 3.521
2996
+ - type: map_at_2
2997
+ value: 5.309
2998
+ - type: map_at_3
2999
+ value: 6.576
3000
+ - type: map_at_5
3001
+ value: 8.97
3002
+ - type: map_at_7
3003
+ value: 10.194
3004
+ - type: map_at_10
3005
+ value: 11.949
3006
+ - type: map_at_20
3007
+ value: 14.686
3008
+ - type: map_at_30
3009
+ value: 15.8
3010
+ - type: map_at_50
3011
+ value: 16.59
3012
+ - type: map_at_70
3013
+ value: 17.2
3014
+ - type: map_at_100
3015
+ value: 17.765
3016
+ - type: map_at_200
3017
+ value: 18.636
3018
+ - type: map_at_300
3019
+ value: 18.972
3020
+ - type: map_at_500
3021
+ value: 19.301
3022
+ - type: map_at_700
3023
+ value: 19.445
3024
+ - type: map_at_1000
3025
+ value: 19.546
3026
+ - type: recall_at_1
3027
+ value: 3.521
3028
+ - type: recall_at_2
3029
+ value: 5.848
3030
+ - type: recall_at_3
3031
+ value: 7.657
3032
+ - type: recall_at_5
3033
+ value: 11.368
3034
+ - type: recall_at_7
3035
+ value: 13.748
3036
+ - type: recall_at_10
3037
+ value: 18.061
3038
+ - type: recall_at_20
3039
+ value: 26.844
3040
+ - type: recall_at_30
3041
+ value: 31.186000000000003
3042
+ - type: recall_at_50
3043
+ value: 35.951
3044
+ - type: recall_at_70
3045
+ value: 40.961999999999996
3046
+ - type: recall_at_100
3047
+ value: 46.743
3048
+ - type: recall_at_200
3049
+ value: 58.483
3050
+ - type: recall_at_300
3051
+ value: 65.973
3052
+ - type: recall_at_500
3053
+ value: 75.233
3054
+ - type: recall_at_700
3055
+ value: 80.472
3056
+ - type: recall_at_1000
3057
+ value: 85.02
3058
+ - type: precision_at_1
3059
+ value: 46.939
3060
+ - type: precision_at_2
3061
+ value: 38.775999999999996
3062
+ - type: precision_at_3
3063
+ value: 34.694
3064
+ - type: precision_at_5
3065
+ value: 31.429000000000002
3066
+ - type: precision_at_7
3067
+ value: 27.697
3068
+ - type: precision_at_10
3069
+ value: 24.490000000000002
3070
+ - type: precision_at_20
3071
+ value: 18.776
3072
+ - type: precision_at_30
3073
+ value: 15.034
3074
+ - type: precision_at_50
3075
+ value: 10.857
3076
+ - type: precision_at_70
3077
+ value: 9.096
3078
+ - type: precision_at_100
3079
+ value: 7.51
3080
+ - type: precision_at_200
3081
+ value: 4.929
3082
+ - type: precision_at_300
3083
+ value: 3.7760000000000002
3084
+ - type: precision_at_500
3085
+ value: 2.6780000000000004
3086
+ - type: precision_at_700
3087
+ value: 2.085
3088
+ - type: precision_at_1000
3089
+ value: 1.5709999999999997
3090
+ - type: mrr_at_1
3091
+ value: 46.939
3092
+ - type: mrr_at_2
3093
+ value: 55.102
3094
+ - type: mrr_at_3
3095
+ value: 57.823
3096
+ - type: mrr_at_5
3097
+ value: 60.68
3098
+ - type: mrr_at_7
3099
+ value: 60.972
3100
+ - type: mrr_at_10
3101
+ value: 61.199000000000005
3102
+ - type: mrr_at_20
3103
+ value: 61.831
3104
+ - type: mrr_at_30
3105
+ value: 61.831
3106
+ - type: mrr_at_50
3107
+ value: 61.873
3108
+ - type: mrr_at_70
3109
+ value: 61.873
3110
+ - type: mrr_at_100
3111
+ value: 61.873
3112
+ - type: mrr_at_200
3113
+ value: 61.873
3114
+ - type: mrr_at_300
3115
+ value: 61.873
3116
+ - type: mrr_at_500
3117
+ value: 61.873
3118
+ - type: mrr_at_700
3119
+ value: 61.873
3120
+ - type: mrr_at_1000
3121
+ value: 61.873
3122
+ - task:
3123
+ type: Classification
3124
+ dataset:
3125
+ type: mteb/toxic_conversations_50k
3126
+ name: MTEB ToxicConversationsClassification
3127
+ config: default
3128
+ split: test
3129
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
3130
+ metrics:
3131
+ - type: accuracy
3132
+ value: 69.3294
3133
+ - type: ap
3134
+ value: 14.561333393364736
3135
+ - type: f1
3136
+ value: 53.992309820496466
3137
+ - task:
3138
+ type: Classification
3139
+ dataset:
3140
+ type: mteb/tweet_sentiment_extraction
3141
+ name: MTEB TweetSentimentExtractionClassification
3142
+ config: default
3143
+ split: test
3144
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
3145
+ metrics:
3146
+ - type: accuracy
3147
+ value: 63.63893604980192
3148
+ - type: f1
3149
+ value: 63.92959380489434
3150
+ - task:
3151
+ type: Clustering
3152
+ dataset:
3153
+ type: mteb/twentynewsgroups-clustering
3154
+ name: MTEB TwentyNewsgroupsClustering
3155
+ config: default
3156
+ split: test
3157
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
3158
+ metrics:
3159
+ - type: v_measure
3160
+ value: 56.270879258659775
3161
+ - task:
3162
+ type: PairClassification
3163
+ dataset:
3164
+ type: mteb/twittersemeval2015-pairclassification
3165
+ name: MTEB TwitterSemEval2015
3166
+ config: default
3167
+ split: test
3168
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
3169
+ metrics:
3170
+ - type: cos_sim_accuracy
3171
+ value: 88.71073493473207
3172
+ - type: cos_sim_ap
3173
+ value: 81.52392540284202
3174
+ - type: cos_sim_f1
3175
+ value: 74.71162377994676
3176
+ - type: cos_sim_precision
3177
+ value: 71.89558428885094
3178
+ - type: cos_sim_recall
3179
+ value: 77.75725593667546
3180
+ - type: dot_accuracy
3181
+ value: 88.71073493473207
3182
+ - type: dot_ap
3183
+ value: 81.52394754041109
3184
+ - type: dot_f1
3185
+ value: 74.71162377994676
3186
+ - type: dot_precision
3187
+ value: 71.89558428885094
3188
+ - type: dot_recall
3189
+ value: 77.75725593667546
3190
+ - type: euclidean_accuracy
3191
+ value: 88.71073493473207
3192
+ - type: euclidean_ap
3193
+ value: 81.52392035435321
3194
+ - type: euclidean_f1
3195
+ value: 74.71162377994676
3196
+ - type: euclidean_precision
3197
+ value: 71.89558428885094
3198
+ - type: euclidean_recall
3199
+ value: 77.75725593667546
3200
+ - type: manhattan_accuracy
3201
+ value: 88.47231328604637
3202
+ - type: manhattan_ap
3203
+ value: 81.22907439267321
3204
+ - type: manhattan_f1
3205
+ value: 74.3351571446749
3206
+ - type: manhattan_precision
3207
+ value: 71.78667977390022
3208
+ - type: manhattan_recall
3209
+ value: 77.0712401055409
3210
+ - type: max_accuracy
3211
+ value: 88.71073493473207
3212
+ - type: max_ap
3213
+ value: 81.52394754041109
3214
+ - type: max_f1
3215
+ value: 74.71162377994676
3216
+ - task:
3217
+ type: PairClassification
3218
+ dataset:
3219
+ type: mteb/twitterurlcorpus-pairclassification
3220
+ name: MTEB TwitterURLCorpus
3221
+ config: default
3222
+ split: test
3223
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
3224
+ metrics:
3225
+ - type: cos_sim_accuracy
3226
+ value: 89.85136026700819
3227
+ - type: cos_sim_ap
3228
+ value: 87.7768002924216
3229
+ - type: cos_sim_f1
3230
+ value: 80.358908624794
3231
+ - type: cos_sim_precision
3232
+ value: 76.62918209122023
3233
+ - type: cos_sim_recall
3234
+ value: 84.47028025870034
3235
+ - type: dot_accuracy
3236
+ value: 89.85136026700819
3237
+ - type: dot_ap
3238
+ value: 87.77680027889778
3239
+ - type: dot_f1
3240
+ value: 80.358908624794
3241
+ - type: dot_precision
3242
+ value: 76.62918209122023
3243
+ - type: dot_recall
3244
+ value: 84.47028025870034
3245
+ - type: euclidean_accuracy
3246
+ value: 89.85136026700819
3247
+ - type: euclidean_ap
3248
+ value: 87.77680174697751
3249
+ - type: euclidean_f1
3250
+ value: 80.358908624794
3251
+ - type: euclidean_precision
3252
+ value: 76.62918209122023
3253
+ - type: euclidean_recall
3254
+ value: 84.47028025870034
3255
+ - type: manhattan_accuracy
3256
+ value: 89.86300306593705
3257
+ - type: manhattan_ap
3258
+ value: 87.78613271895861
3259
+ - type: manhattan_f1
3260
+ value: 80.31831016905645
3261
+ - type: manhattan_precision
3262
+ value: 76.68230516070304
3263
+ - type: manhattan_recall
3264
+ value: 84.3162919618109
3265
+ - type: max_accuracy
3266
+ value: 89.86300306593705
3267
+ - type: max_ap
3268
+ value: 87.78613271895861
3269
+ - type: max_f1
3270
+ value: 80.358908624794
3271
+ language:
3272
+ - en
3273
+ license: mit
3274
  ---
3275
+
3276
+ ## Salesforce/SFR-Embedding-Mistral
3277
+
3278
+ **SFR-Embedding by Salesforce Research.**
3279
+
3280
+ The model is trained on top of [E5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) and [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). The model has 32 layers and the embedding size is 4096.
3281
+
3282
+ More technical details will be updated later.
3283
+
3284
+ ### SFR-Embedding Team
3285
+ * Rui Meng
3286
+ * Ye Liu
3287
+ * Semih Yavuz
3288
+ * Yingbo Zhou
3289
+ * Caiming Xiong