Update README.md
Browse files
README.md
CHANGED
@@ -32,11 +32,12 @@ You can use this model for conditional and un-conditional image captioning
|
|
32 |
<summary> Click to expand </summary>
|
33 |
|
34 |
```python
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
39 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base")
|
40 |
|
41 |
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
42 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
@@ -46,13 +47,15 @@ text = "a photography of"
|
|
46 |
inputs = processor(raw_image, text, return_tensors="pt")
|
47 |
|
48 |
out = model.generate(**inputs)
|
49 |
-
print(processor.decode(out[0], skip_special_tokens=True)
|
|
|
50 |
|
51 |
# unconditional image captioning
|
52 |
inputs = processor(raw_image, return_tensors="pt")
|
53 |
|
54 |
out = model.generate(**inputs)
|
55 |
-
print(processor.decode(out[0], skip_special_tokens=True)
|
|
|
56 |
```
|
57 |
</details>
|
58 |
|
@@ -64,11 +67,12 @@ print(processor.decode(out[0], skip_special_tokens=True)
|
|
64 |
<summary> Click to expand </summary>
|
65 |
|
66 |
```python
|
67 |
-
|
68 |
-
from
|
|
|
69 |
|
70 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
71 |
-
model = BlipForConditionalGeneration.from_pretrained("
|
72 |
|
73 |
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
74 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
@@ -78,13 +82,15 @@ text = "a photography of"
|
|
78 |
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
79 |
|
80 |
out = model.generate(**inputs)
|
81 |
-
print(processor.decode(out[0], skip_special_tokens=True)
|
|
|
82 |
|
83 |
# unconditional image captioning
|
84 |
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
85 |
|
86 |
out = model.generate(**inputs)
|
87 |
-
print(processor.decode(out[0], skip_special_tokens=True)
|
|
|
88 |
```
|
89 |
</details>
|
90 |
|
@@ -95,7 +101,9 @@ print(processor.decode(out[0], skip_special_tokens=True)
|
|
95 |
|
96 |
```python
|
97 |
import torch
|
98 |
-
|
|
|
|
|
99 |
|
100 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
101 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
@@ -108,13 +116,15 @@ text = "a photography of"
|
|
108 |
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
109 |
|
110 |
out = model.generate(**inputs)
|
111 |
-
print(processor.decode(out[0], skip_special_tokens=True)
|
|
|
112 |
|
113 |
# unconditional image captioning
|
114 |
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
115 |
|
116 |
out = model.generate(**inputs)
|
117 |
-
print(processor.decode(out[0], skip_special_tokens=True)
|
|
|
118 |
```
|
119 |
</details>
|
120 |
|
|
|
32 |
<summary> Click to expand </summary>
|
33 |
|
34 |
```python
|
35 |
+
import requests
|
36 |
+
from PIL import Image
|
37 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
38 |
|
39 |
+
processor = BlipProcessor.from_pretrained("ybelkada/blip-image-captioning-base")
|
40 |
+
model = BlipForConditionalGeneration.from_pretrained("ybelkada/blip-image-captioning-base")
|
|
|
|
|
41 |
|
42 |
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
43 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
|
|
47 |
inputs = processor(raw_image, text, return_tensors="pt")
|
48 |
|
49 |
out = model.generate(**inputs)
|
50 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
51 |
+
# >>> a photography of a woman and her dog
|
52 |
|
53 |
# unconditional image captioning
|
54 |
inputs = processor(raw_image, return_tensors="pt")
|
55 |
|
56 |
out = model.generate(**inputs)
|
57 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
58 |
+
>>> a woman sitting on the beach with her dog
|
59 |
```
|
60 |
</details>
|
61 |
|
|
|
67 |
<summary> Click to expand </summary>
|
68 |
|
69 |
```python
|
70 |
+
import requests
|
71 |
+
from PIL import Image
|
72 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
73 |
|
74 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
75 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base").to("cuda")
|
76 |
|
77 |
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
78 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
|
|
82 |
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
83 |
|
84 |
out = model.generate(**inputs)
|
85 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
86 |
+
# >>> a photography of a woman and her dog
|
87 |
|
88 |
# unconditional image captioning
|
89 |
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
90 |
|
91 |
out = model.generate(**inputs)
|
92 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
93 |
+
>>> a woman sitting on the beach with her dog
|
94 |
```
|
95 |
</details>
|
96 |
|
|
|
101 |
|
102 |
```python
|
103 |
import torch
|
104 |
+
import requests
|
105 |
+
from PIL import Image
|
106 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
107 |
|
108 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
109 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
|
|
116 |
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
117 |
|
118 |
out = model.generate(**inputs)
|
119 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
120 |
+
# >>> a photography of a woman and her dog
|
121 |
|
122 |
# unconditional image captioning
|
123 |
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
124 |
|
125 |
out = model.generate(**inputs)
|
126 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
127 |
+
>>> a woman sitting on the beach with her dog
|
128 |
```
|
129 |
</details>
|
130 |
|