ybelkada commited on
Commit
eced05e
1 Parent(s): 12d1e73

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +151 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - visual-question-answering
4
+ languages:
5
+ - en
6
+ license: bsd-3-clause
7
+ ---
8
+
9
+ # BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
10
+
11
+ Model card for image captioning pretrained on COCO dataset - base architecture (with ViT large backbone).
12
+
13
+ | ![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
14
+ |:--:|
15
+ | <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
16
+
17
+ ## TL;DR
18
+
19
+ Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
20
+
21
+ *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
22
+
23
+ ## Usage
24
+
25
+ You can use this model for conditional and un-conditional image captioning
26
+
27
+ ### Using the Pytorch model
28
+
29
+ #### Running the model on CPU
30
+
31
+ <details>
32
+ <summary> Click to expand </summary>
33
+
34
+ ```python
35
+ import requests
36
+ from PIL import Image
37
+ from transformers import BlipProcessor, BlipForConditionalGeneration
38
+
39
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
40
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
41
+
42
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
43
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
44
+
45
+ # conditional image captioning
46
+ text = "a photography of"
47
+ inputs = processor(raw_image, text, return_tensors="pt")
48
+
49
+ out = model.generate(**inputs)
50
+ print(processor.decode(out[0], skip_special_tokens=True))
51
+ # >>> a photography of a woman and her dog
52
+
53
+ # unconditional image captioning
54
+ inputs = processor(raw_image, return_tensors="pt")
55
+
56
+ out = model.generate(**inputs)
57
+ print(processor.decode(out[0], skip_special_tokens=True))
58
+ >>> a woman sitting on the beach with her dog
59
+ ```
60
+ </details>
61
+
62
+ #### Running the model on GPU
63
+
64
+ ##### In full precision
65
+
66
+ <details>
67
+ <summary> Click to expand </summary>
68
+
69
+ ```python
70
+ import requests
71
+ from PIL import Image
72
+ from transformers import BlipProcessor, BlipForConditionalGeneration
73
+
74
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
75
+ model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-large").to("cuda")
76
+
77
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
78
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
79
+
80
+ # conditional image captioning
81
+ text = "a photography of"
82
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
83
+
84
+ out = model.generate(**inputs)
85
+ print(processor.decode(out[0], skip_special_tokens=True))
86
+ # >>> a photography of a woman and her dog
87
+
88
+ # unconditional image captioning
89
+ inputs = processor(raw_image, return_tensors="pt").to("cuda")
90
+
91
+ out = model.generate(**inputs)
92
+ print(processor.decode(out[0], skip_special_tokens=True))
93
+ >>> a woman sitting on the beach with her dog
94
+ ```
95
+ </details>
96
+
97
+ ##### In half precision (`float16`)
98
+
99
+ <details>
100
+ <summary> Click to expand </summary>
101
+
102
+ ```python
103
+ import torch
104
+ import requests
105
+ from PIL import Image
106
+ from transformers import BlipProcessor, BlipForConditionalGeneration
107
+
108
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
109
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
110
+
111
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
112
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
113
+
114
+ # conditional image captioning
115
+ text = "a photography of"
116
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
117
+
118
+ out = model.generate(**inputs)
119
+ print(processor.decode(out[0], skip_special_tokens=True))
120
+ # >>> a photography of a woman and her dog
121
+
122
+ # unconditional image captioning
123
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
124
+
125
+ out = model.generate(**inputs)
126
+ print(processor.decode(out[0], skip_special_tokens=True))
127
+ >>> a woman sitting on the beach with her dog
128
+ ```
129
+ </details>
130
+
131
+ ## BibTex and citation info
132
+
133
+ ```
134
+ @misc{https://doi.org/10.48550/arxiv.2201.12086,
135
+ doi = {10.48550/ARXIV.2201.12086},
136
+
137
+ url = {https://arxiv.org/abs/2201.12086},
138
+
139
+ author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
140
+
141
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
142
+
143
+ title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
144
+
145
+ publisher = {arXiv},
146
+
147
+ year = {2022},
148
+
149
+ copyright = {Creative Commons Attribution 4.0 International}
150
+ }
151
+ ```