File size: 4,820 Bytes
553158d 2c51ecd 553158d 2c51ecd 553158d 2c51ecd 553158d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
pipeline_tags: 'other'
tags:
- image-text-matching
languages:
- en
license: bsd-3-clause
---
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Model card for BLIP trained on image-text matching - large architecture (with ViT large backbone) trained on COCO dataset.
| ![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
|:--:|
| <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
## TL;DR
Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
## Usage
You can use this model for conditional and un-conditional image captioning
### Using the Pytorch model
#### Running the model on CPU
<details>
<summary> Click to expand </summary>
```python
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForImageTextRetrieval
processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-large-coco")
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-large-coco")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "A woman and a dog sitting together in a beach."
inputs = processor(raw_image, question, return_tensors="pt")
itm_scores = model(**inputs)[0]
cosine_score = model(**inputs, use_itm_head=False)[0]
```
</details>
#### Running the model on GPU
##### In full precision
<details>
<summary> Click to expand </summary>
```python
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForImageTextRetrieval
processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-large-coco")
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-large-coco").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "A woman and a dog sitting together in a beach."
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
itm_scores = model(**inputs)[0]
cosine_score = model(**inputs, use_itm_head=False)[0]
```
</details>
##### In half precision (`float16`)
<details>
<summary> Click to expand </summary>
```python
import torch
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForImageTextRetrieval
processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-large-coco")
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-large-coco", torch_dtype=torch.float16).to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "A woman and a dog sitting together in a beach."
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
itm_scores = model(**inputs)[0]
cosine_score = model(**inputs, use_itm_head=False)[0]
```
</details>
## BibTex and citation info
```
@misc{https://doi.org/10.48550/arxiv.2201.12086,
doi = {10.48550/ARXIV.2201.12086},
url = {https://arxiv.org/abs/2201.12086},
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
``` |