File size: 5,446 Bytes
21bcce5
 
 
 
 
a712fe6
 
 
21bcce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a5f8c
 
 
 
 
 
 
 
 
 
 
 
ca9e6c2
 
c3a5f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9e6c2
 
c3a5f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9e6c2
 
c3a5f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9e6c2
 
c3a5f8c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
language: en
license: mit
tags:
- vision
- image-to-text 
- image-captioning
- visual-question-answering
pipeline_tag: image-to-text
---

# BLIP-2, OPT-2.7b, pre-trained only

BLIP-2 model, leveraging [OPT-2.7b](https://huggingface.co/facebook/opt-2.7b) (a large language model with 2.7 billion parameters).
It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2).

Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team.

## Model description

BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model.

The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen
while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings,
which bridge the gap between the embedding space of the image encoder and the large language model.

The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text.

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
alt="drawing" width="600"/> 

This allows the model to be used for tasks like:

- image captioning
- visual question answering (VQA)
- chat-like conversations by feeding the image and the previous conversation as prompt to the model

## Intended uses & limitations

You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for
fine-tuned versions on a task that interests you.

### How to use

For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).

#### Running the model on CPU

<details>
<summary> Click to expand </summary>

```python
import requests
from PIL import Image
from transformers import BlipProcessor, Blip2ForConditionalGeneration

processor = BlipProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' 
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt")

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>

#### Running the model on GPU

##### In full precision 

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' 
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>

##### In half precision (`float16`)

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' 
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>

##### In 8-bit precision (`int8`)

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate bitsandbytes
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map="auto")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' 
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>