yuewang-sf
commited on
Commit
·
8300c1c
1
Parent(s):
fe5f115
Upload 2 files
Browse files- configuration_codet5p.py +113 -0
- modeling_codet5p.py +982 -0
configuration_codet5p.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
|
4 |
+
""" CodeT5+ model configuration"""
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
import copy
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
# Adapted from transformers.models.codegen.configuration_codegen.CodeGenConfig
|
13 |
+
class CodeT5pModuleConfig(PretrainedConfig):
|
14 |
+
model_type = "codet5p_module"
|
15 |
+
attribute_map = {
|
16 |
+
"max_position_embeddings": "n_positions",
|
17 |
+
"hidden_size": "n_embd",
|
18 |
+
"num_attention_heads": "n_head",
|
19 |
+
"num_hidden_layers": "n_layer",
|
20 |
+
}
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
vocab_size=50400,
|
25 |
+
n_positions=2048,
|
26 |
+
n_ctx=2048,
|
27 |
+
n_embd=4096,
|
28 |
+
n_layer=28,
|
29 |
+
n_head=16,
|
30 |
+
rotary_dim=64,
|
31 |
+
n_inner=None,
|
32 |
+
activation_function="gelu_new",
|
33 |
+
resid_pdrop=0.0,
|
34 |
+
embd_pdrop=0.0,
|
35 |
+
attn_pdrop=0.0,
|
36 |
+
layer_norm_epsilon=1e-5,
|
37 |
+
initializer_range=0.02,
|
38 |
+
scale_attn_weights=True,
|
39 |
+
use_cache=True,
|
40 |
+
bos_token_id=50256,
|
41 |
+
eos_token_id=50256,
|
42 |
+
tie_word_embeddings=False,
|
43 |
+
**kwargs
|
44 |
+
):
|
45 |
+
self.vocab_size = vocab_size
|
46 |
+
self.n_ctx = n_ctx
|
47 |
+
self.n_positions = n_positions
|
48 |
+
self.n_embd = n_embd
|
49 |
+
self.n_layer = n_layer
|
50 |
+
self.n_head = n_head
|
51 |
+
self.n_inner = n_inner
|
52 |
+
self.rotary_dim = rotary_dim
|
53 |
+
self.activation_function = activation_function
|
54 |
+
self.resid_pdrop = resid_pdrop
|
55 |
+
self.embd_pdrop = embd_pdrop
|
56 |
+
self.attn_pdrop = attn_pdrop
|
57 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
58 |
+
self.initializer_range = initializer_range
|
59 |
+
self.scale_attn_weights = scale_attn_weights
|
60 |
+
self.use_cache = use_cache
|
61 |
+
|
62 |
+
self.bos_token_id = bos_token_id
|
63 |
+
self.eos_token_id = eos_token_id
|
64 |
+
|
65 |
+
super().__init__(
|
66 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
# Adapted from transformers.models.encoder_decoder.configuration_encoder_decoder.EncoderDecoderConfig
|
71 |
+
class CodeT5pConfig(PretrainedConfig):
|
72 |
+
model_type = "codet5p"
|
73 |
+
is_composition = True
|
74 |
+
|
75 |
+
def __init__(self, **kwargs):
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
assert (
|
78 |
+
"encoder" in kwargs and "decoder" in kwargs
|
79 |
+
), "Config has to be initialized with encoder and decoder config"
|
80 |
+
encoder_config = kwargs.pop("encoder")
|
81 |
+
decoder_config = kwargs.pop("decoder")
|
82 |
+
encoder_model_type = encoder_config.pop("model_type")
|
83 |
+
decoder_model_type = decoder_config.pop("model_type")
|
84 |
+
|
85 |
+
if encoder_model_type != decoder_model_type:
|
86 |
+
logger.warning("Encoder and decoder model types are different")
|
87 |
+
|
88 |
+
self.encoder = CodeT5pModuleConfig(**encoder_config)
|
89 |
+
self.decoder = CodeT5pModuleConfig(**decoder_config)
|
90 |
+
self.is_encoder_decoder = True
|
91 |
+
|
92 |
+
@classmethod
|
93 |
+
def from_encoder_decoder_configs(
|
94 |
+
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
|
95 |
+
) -> PretrainedConfig:
|
96 |
+
logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
|
97 |
+
decoder_config.is_decoder = True
|
98 |
+
decoder_config.add_cross_attention = True
|
99 |
+
|
100 |
+
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
101 |
+
|
102 |
+
def to_dict(self):
|
103 |
+
"""
|
104 |
+
Serializes this instance to a Python dictionary. Override the default *to_dict()* from *PretrainedConfig*.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
108 |
+
"""
|
109 |
+
output = copy.deepcopy(self.__dict__)
|
110 |
+
output["encoder"] = self.encoder.to_dict()
|
111 |
+
output["decoder"] = self.decoder.to_dict()
|
112 |
+
output["model_type"] = self.__class__.model_type
|
113 |
+
return output
|
modeling_codet5p.py
ADDED
@@ -0,0 +1,982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
""" PyTorch CodeT5+ 2B 6B 16B models.
|
4 |
+
The implementation is mainly based on transformers.models.codegen.modeling_codegen by adding cross-attention
|
5 |
+
and transformers.models.encoder_decoder.modeling_encoder_decoder.EncoderDecoderModel.
|
6 |
+
"""
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput, \
|
15 |
+
BaseModelOutputWithPast, CausalLMOutputWithPast, \
|
16 |
+
BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, logging
|
20 |
+
from configuration_codet5p import CodeT5pConfig, CodeT5pModuleConfig
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
CODET5P_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
25 |
+
"Salesforce/codet5p-220m",
|
26 |
+
"Salesforce/codet5p-770m",
|
27 |
+
"Salesforce/codet5p-220m-py",
|
28 |
+
"Salesforce/codet5p-770m-py",
|
29 |
+
"Salesforce/codet5p-2b",
|
30 |
+
"Salesforce/codet5p-6b",
|
31 |
+
"Salesforce/codet5p-16b",
|
32 |
+
"Salesforce/instructcodet5p-16b",
|
33 |
+
# See all CodeT5+ models at https://huggingface.co/models?filter=codet5p
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
# Copied from transformers.models.gptj.modeling_gptj.fixed_pos_embedding
|
38 |
+
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
39 |
+
dim = x.shape[-1]
|
40 |
+
if seq_len is None:
|
41 |
+
seq_len = x.shape[seq_dim]
|
42 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
43 |
+
sinusoid_inp = (
|
44 |
+
torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
|
45 |
+
)
|
46 |
+
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
47 |
+
|
48 |
+
|
49 |
+
# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
|
50 |
+
def rotate_every_two(x):
|
51 |
+
x1 = x[:, :, :, ::2]
|
52 |
+
x2 = x[:, :, :, 1::2]
|
53 |
+
x = torch.stack((-x2, x1), dim=-1)
|
54 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
55 |
+
|
56 |
+
|
57 |
+
# Copied from transformers.models.gptj.modeling_gptj.duplicate_interleave
|
58 |
+
def duplicate_interleave(m):
|
59 |
+
"""
|
60 |
+
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
|
61 |
+
"""
|
62 |
+
dim0 = m.shape[0]
|
63 |
+
m = m.view(-1, 1) # flatten the matrix
|
64 |
+
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
|
65 |
+
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
|
66 |
+
return m
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
|
70 |
+
def apply_rotary_pos_emb(x, sincos, offset=0):
|
71 |
+
sin, cos = (duplicate_interleave(t)[None, offset: x.shape[1] + offset, None, :] for t in sincos)
|
72 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
73 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
74 |
+
|
75 |
+
|
76 |
+
# Adapted from transformers.models.codegen.modeling_codegen.CodeGenAttention
|
77 |
+
class CodeT5pAttention(nn.Module):
|
78 |
+
def __init__(self, config, is_cross_attention=False, is_decoder=True):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
max_positions = config.max_position_embeddings
|
82 |
+
self.register_buffer(
|
83 |
+
"causal_mask",
|
84 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
85 |
+
1, 1, max_positions, max_positions
|
86 |
+
),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
90 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
91 |
+
|
92 |
+
self.embed_dim = config.hidden_size
|
93 |
+
self.num_attention_heads = config.num_attention_heads
|
94 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
95 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
96 |
+
raise ValueError(
|
97 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
98 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
99 |
+
)
|
100 |
+
|
101 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
102 |
+
self.is_decoder = is_decoder
|
103 |
+
self.is_cross_attention = is_cross_attention
|
104 |
+
if self.is_cross_attention:
|
105 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 2, bias=False)
|
106 |
+
self.q_attn = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
107 |
+
else:
|
108 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
109 |
+
|
110 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
111 |
+
self.rotary_dim = None
|
112 |
+
if config.rotary_dim is not None:
|
113 |
+
self.rotary_dim = config.rotary_dim
|
114 |
+
|
115 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
116 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
|
117 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
|
118 |
+
return reshaped
|
119 |
+
|
120 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
121 |
+
"""
|
122 |
+
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
123 |
+
"""
|
124 |
+
if len(tensor.shape) == 5:
|
125 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
126 |
+
elif len(tensor.shape) == 4:
|
127 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
128 |
+
else:
|
129 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
130 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
131 |
+
return tensor.view(new_shape)
|
132 |
+
|
133 |
+
def _attn(
|
134 |
+
self,
|
135 |
+
query,
|
136 |
+
key,
|
137 |
+
value,
|
138 |
+
attention_mask=None,
|
139 |
+
head_mask=None,
|
140 |
+
):
|
141 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
142 |
+
query = query.to(torch.float32)
|
143 |
+
key = key.to(torch.float32)
|
144 |
+
|
145 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
146 |
+
attn_weights = attn_weights / self.scale_attn
|
147 |
+
|
148 |
+
if not self.is_cross_attention and self.is_decoder:
|
149 |
+
# compute causal mask from causal mask buffer
|
150 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
151 |
+
causal_mask = self.causal_mask[:, :, key_length - query_length: key_length, :key_length]
|
152 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
153 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
154 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
155 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
156 |
+
attn_weights = torch.where(causal_mask.bool(), attn_weights, mask_value)
|
157 |
+
|
158 |
+
if attention_mask is not None:
|
159 |
+
# Apply the attention mask
|
160 |
+
attn_weights = attn_weights + attention_mask
|
161 |
+
|
162 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
163 |
+
attn_weights = attn_weights.to(value.dtype)
|
164 |
+
attn_weights = self.attn_dropout(attn_weights)
|
165 |
+
|
166 |
+
# Mask heads if we want to
|
167 |
+
if head_mask is not None:
|
168 |
+
attn_weights = attn_weights * head_mask
|
169 |
+
|
170 |
+
attn_output = torch.matmul(attn_weights, value)
|
171 |
+
|
172 |
+
return attn_output, attn_weights
|
173 |
+
|
174 |
+
def forward(
|
175 |
+
self,
|
176 |
+
hidden_states: Optional[torch.FloatTensor],
|
177 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
178 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
179 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
180 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
181 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
182 |
+
use_cache: Optional[bool] = False,
|
183 |
+
output_attentions: Optional[bool] = False,
|
184 |
+
) -> Union[
|
185 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
186 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
187 |
+
]:
|
188 |
+
|
189 |
+
if encoder_hidden_states is not None:
|
190 |
+
if not hasattr(self, "q_attn"):
|
191 |
+
raise ValueError(
|
192 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
193 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
194 |
+
)
|
195 |
+
|
196 |
+
mp_num = 4
|
197 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
198 |
+
q = self.q_attn(hidden_states)
|
199 |
+
q_split = q.reshape(q.shape[:-1] + (mp_num, -1))
|
200 |
+
query = torch.split(q_split, local_dim, dim=-1)[0]
|
201 |
+
|
202 |
+
qkv = self.qkv_proj(encoder_hidden_states)
|
203 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
204 |
+
value, key = torch.split(qkv_split, local_dim, dim=-1)
|
205 |
+
|
206 |
+
attention_mask = encoder_attention_mask
|
207 |
+
else:
|
208 |
+
qkv = self.qkv_proj(hidden_states)
|
209 |
+
mp_num = 4
|
210 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
211 |
+
|
212 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
213 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
214 |
+
|
215 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
216 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
217 |
+
|
218 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
219 |
+
value = value.permute(0, 2, 1, 3)
|
220 |
+
|
221 |
+
seq_len = key.shape[1]
|
222 |
+
offset = 0
|
223 |
+
|
224 |
+
if layer_past is not None:
|
225 |
+
offset = layer_past[0].shape[-2]
|
226 |
+
seq_len += offset
|
227 |
+
|
228 |
+
if self.rotary_dim is not None:
|
229 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
230 |
+
k_pass = key[:, :, :, self.rotary_dim:]
|
231 |
+
|
232 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
233 |
+
q_pass = query[:, :, :, self.rotary_dim:]
|
234 |
+
|
235 |
+
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
|
236 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
|
237 |
+
seq_len_q = query.shape[1]
|
238 |
+
sincos_q = fixed_pos_embedding(q_rot, 1, seq_len=seq_len_q)
|
239 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos_q, offset=offset)
|
240 |
+
|
241 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
242 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
243 |
+
else:
|
244 |
+
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
|
245 |
+
key = apply_rotary_pos_emb(key, sincos, offset=offset)
|
246 |
+
query = apply_rotary_pos_emb(query, sincos, offset=offset)
|
247 |
+
|
248 |
+
key = key.permute(0, 2, 1, 3)
|
249 |
+
query = query.permute(0, 2, 1, 3)
|
250 |
+
|
251 |
+
if layer_past is not None:
|
252 |
+
past_key = layer_past[0]
|
253 |
+
past_value = layer_past[1]
|
254 |
+
key = torch.cat((past_key, key), dim=-2)
|
255 |
+
value = torch.cat((past_value, value), dim=-2)
|
256 |
+
|
257 |
+
if use_cache is True:
|
258 |
+
present = (key, value)
|
259 |
+
else:
|
260 |
+
present = None
|
261 |
+
|
262 |
+
# compute self-attention: V x Softmax(QK^T)
|
263 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
264 |
+
|
265 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
266 |
+
attn_output = self.out_proj(attn_output)
|
267 |
+
attn_output = self.resid_dropout(attn_output)
|
268 |
+
|
269 |
+
outputs = (attn_output, present)
|
270 |
+
if output_attentions:
|
271 |
+
outputs += (attn_weights,)
|
272 |
+
|
273 |
+
return outputs # a, present, (attentions)
|
274 |
+
|
275 |
+
|
276 |
+
# Adapted from transformers.models.codegen.modeling_codegen.CodeGenMLP
|
277 |
+
class CodeT5pMLP(nn.Module):
|
278 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
279 |
+
super().__init__()
|
280 |
+
embed_dim = config.n_embd
|
281 |
+
|
282 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
283 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
284 |
+
|
285 |
+
self.act = ACT2FN[config.activation_function]
|
286 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
287 |
+
|
288 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
289 |
+
hidden_states = self.fc_in(hidden_states)
|
290 |
+
hidden_states = self.act(hidden_states)
|
291 |
+
hidden_states = self.fc_out(hidden_states)
|
292 |
+
hidden_states = self.dropout(hidden_states)
|
293 |
+
return hidden_states
|
294 |
+
|
295 |
+
|
296 |
+
# Adapted from transformers.models.codegen.modeling_codegen.CodeGenBlock
|
297 |
+
class CodeT5pBlock(nn.Module):
|
298 |
+
def __init__(self, config, layer_idx=None):
|
299 |
+
super().__init__()
|
300 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
301 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
302 |
+
|
303 |
+
if config.is_decoder is False:
|
304 |
+
self.attn = CodeT5pAttention(config, is_cross_attention=False, is_decoder=False)
|
305 |
+
else:
|
306 |
+
self.attn = CodeT5pAttention(config)
|
307 |
+
self.mlp = CodeT5pMLP(inner_dim, config)
|
308 |
+
|
309 |
+
# Adding 1 cross-attention layer at the final decoder layer
|
310 |
+
self.add_cross_attention_by_layer = True \
|
311 |
+
if config.add_cross_attention and layer_idx == config.n_layer - 1 else False
|
312 |
+
|
313 |
+
if config.add_cross_attention and self.add_cross_attention_by_layer:
|
314 |
+
self.crossattention = CodeT5pAttention(config, is_cross_attention=True)
|
315 |
+
|
316 |
+
def forward(
|
317 |
+
self,
|
318 |
+
hidden_states: Optional[torch.FloatTensor],
|
319 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
320 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
321 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
322 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
323 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
324 |
+
use_cache: Optional[bool] = False,
|
325 |
+
output_attentions: Optional[bool] = False,
|
326 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
327 |
+
residual = hidden_states
|
328 |
+
hidden_states = self.ln_1(hidden_states)
|
329 |
+
attn_outputs = self.attn(
|
330 |
+
hidden_states,
|
331 |
+
layer_past=layer_past,
|
332 |
+
attention_mask=attention_mask,
|
333 |
+
head_mask=head_mask,
|
334 |
+
use_cache=use_cache,
|
335 |
+
output_attentions=output_attentions,
|
336 |
+
)
|
337 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
338 |
+
outputs = attn_outputs[1:]
|
339 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
340 |
+
|
341 |
+
if encoder_hidden_states is not None and self.add_cross_attention_by_layer:
|
342 |
+
# add one self-attention block for cross-attention
|
343 |
+
if not hasattr(self, "crossattention"):
|
344 |
+
raise ValueError(
|
345 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
346 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
347 |
+
)
|
348 |
+
# residual = hidden_states
|
349 |
+
# hidden_states = self.ln_cross_attn(residual)
|
350 |
+
cross_attn_outputs = self.crossattention(
|
351 |
+
hidden_states,
|
352 |
+
attention_mask=attention_mask,
|
353 |
+
head_mask=head_mask,
|
354 |
+
encoder_hidden_states=encoder_hidden_states,
|
355 |
+
encoder_attention_mask=encoder_attention_mask,
|
356 |
+
output_attentions=output_attentions,
|
357 |
+
)
|
358 |
+
xattn_output = cross_attn_outputs[0]
|
359 |
+
attn_output = attn_output + xattn_output
|
360 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
361 |
+
|
362 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
363 |
+
|
364 |
+
if use_cache:
|
365 |
+
outputs = (hidden_states,) + outputs
|
366 |
+
else:
|
367 |
+
outputs = (hidden_states,) + outputs[1:]
|
368 |
+
|
369 |
+
return outputs # hidden_states, present, (attentions)
|
370 |
+
|
371 |
+
|
372 |
+
# Adapted from transformers.models.codegen.modeling_codegen.CodeGenPreTrainedModel
|
373 |
+
class CodeT5pPreTrainedModel(PreTrainedModel):
|
374 |
+
"""
|
375 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
376 |
+
models.
|
377 |
+
"""
|
378 |
+
config_class = CodeT5pModuleConfig
|
379 |
+
base_model_prefix = "transformer"
|
380 |
+
supports_gradient_checkpointing = True
|
381 |
+
_no_split_modules = ["CodeT5pBlock"]
|
382 |
+
|
383 |
+
def __init__(self, *inputs, **kwargs):
|
384 |
+
super().__init__(*inputs, **kwargs)
|
385 |
+
|
386 |
+
def _init_weights(self, module):
|
387 |
+
"""Initialize the weights."""
|
388 |
+
if isinstance(module, (nn.Linear,)):
|
389 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
390 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
391 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
392 |
+
if module.bias is not None:
|
393 |
+
module.bias.data.zero_()
|
394 |
+
elif isinstance(module, nn.Embedding):
|
395 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
396 |
+
if module.padding_idx is not None:
|
397 |
+
module.weight.data[module.padding_idx].zero_()
|
398 |
+
elif isinstance(module, nn.LayerNorm):
|
399 |
+
module.bias.data.zero_()
|
400 |
+
module.weight.data.fill_(1.0)
|
401 |
+
|
402 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
403 |
+
if isinstance(module, CodeT5pModel):
|
404 |
+
module.gradient_checkpointing = value
|
405 |
+
|
406 |
+
|
407 |
+
# Adapted from transformers.models.codegen.modeling_codegen.CodeGenModel
|
408 |
+
class CodeT5pModel(CodeT5pPreTrainedModel):
|
409 |
+
def __init__(self, config):
|
410 |
+
super().__init__(config)
|
411 |
+
|
412 |
+
self.embed_dim = config.n_embd
|
413 |
+
self.vocab_size = config.vocab_size
|
414 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
415 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
416 |
+
self.h = nn.ModuleList([CodeT5pBlock(config, idx) for idx in range(config.n_layer)])
|
417 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
418 |
+
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
419 |
+
|
420 |
+
self.gradient_checkpointing = False
|
421 |
+
|
422 |
+
# Initialize weights and apply final processing
|
423 |
+
self.post_init()
|
424 |
+
|
425 |
+
def get_input_embeddings(self):
|
426 |
+
return self.wte
|
427 |
+
|
428 |
+
def set_input_embeddings(self, new_embeddings):
|
429 |
+
self.wte = new_embeddings
|
430 |
+
|
431 |
+
def forward(
|
432 |
+
self,
|
433 |
+
input_ids: Optional[torch.LongTensor] = None,
|
434 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
435 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
436 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
437 |
+
position_ids: Optional[torch.LongTensor] = None,
|
438 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
439 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
440 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
441 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
442 |
+
use_cache: Optional[bool] = None,
|
443 |
+
output_attentions: Optional[bool] = None,
|
444 |
+
output_hidden_states: Optional[bool] = None,
|
445 |
+
return_dict: Optional[bool] = None,
|
446 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
447 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
448 |
+
output_hidden_states = (
|
449 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
450 |
+
)
|
451 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
452 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
453 |
+
|
454 |
+
if input_ids is not None and inputs_embeds is not None:
|
455 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
456 |
+
elif input_ids is not None:
|
457 |
+
input_shape = input_ids.size()
|
458 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
459 |
+
batch_size = input_ids.shape[0]
|
460 |
+
elif inputs_embeds is not None:
|
461 |
+
input_shape = inputs_embeds.size()[:-1]
|
462 |
+
batch_size = inputs_embeds.shape[0]
|
463 |
+
else:
|
464 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
465 |
+
|
466 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
467 |
+
|
468 |
+
if token_type_ids is not None:
|
469 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
470 |
+
|
471 |
+
if position_ids is not None:
|
472 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
473 |
+
|
474 |
+
if past_key_values is None:
|
475 |
+
past_length = 0
|
476 |
+
past_key_values = tuple([None] * len(self.h))
|
477 |
+
else:
|
478 |
+
past_length = past_key_values[0][0].size(-2)
|
479 |
+
|
480 |
+
if position_ids is None:
|
481 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
482 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
483 |
+
|
484 |
+
# Attention mask.
|
485 |
+
if attention_mask is not None:
|
486 |
+
if batch_size <= 0:
|
487 |
+
raise ValueError("batch_size has to be defined and > 0")
|
488 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
489 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
490 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
491 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
492 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
493 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
494 |
+
attention_mask = attention_mask[:, None, None, :]
|
495 |
+
|
496 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
497 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
498 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
499 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
500 |
+
# effectively the same as removing these entirely.
|
501 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
502 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
503 |
+
|
504 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
505 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
506 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
507 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
508 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
509 |
+
if encoder_attention_mask is None:
|
510 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
511 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
512 |
+
else:
|
513 |
+
encoder_attention_mask = None
|
514 |
+
|
515 |
+
# Prepare head mask if needed
|
516 |
+
# 1.0 in head_mask indicate we keep the head
|
517 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
518 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
519 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
520 |
+
|
521 |
+
if inputs_embeds is None:
|
522 |
+
inputs_embeds = self.wte(input_ids)
|
523 |
+
|
524 |
+
hidden_states = inputs_embeds
|
525 |
+
|
526 |
+
if token_type_ids is not None:
|
527 |
+
token_type_embeds = self.wte(token_type_ids)
|
528 |
+
hidden_states = hidden_states + token_type_embeds
|
529 |
+
|
530 |
+
hidden_states = self.drop(hidden_states)
|
531 |
+
|
532 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
533 |
+
|
534 |
+
presents = () if use_cache else None
|
535 |
+
all_self_attentions = () if output_attentions else None
|
536 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
537 |
+
all_hidden_states = () if output_hidden_states else None
|
538 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
539 |
+
if output_hidden_states:
|
540 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
541 |
+
|
542 |
+
if self.gradient_checkpointing and self.training:
|
543 |
+
if use_cache:
|
544 |
+
logger.warning(
|
545 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
546 |
+
"`use_cache=False`..."
|
547 |
+
)
|
548 |
+
use_cache = False
|
549 |
+
|
550 |
+
def create_custom_forward(module):
|
551 |
+
def custom_forward(*inputs):
|
552 |
+
# None for past_key_value
|
553 |
+
return module(*inputs, use_cache, output_attentions)
|
554 |
+
|
555 |
+
return custom_forward
|
556 |
+
|
557 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
558 |
+
create_custom_forward(block),
|
559 |
+
hidden_states,
|
560 |
+
None,
|
561 |
+
attention_mask,
|
562 |
+
head_mask[i],
|
563 |
+
encoder_hidden_states,
|
564 |
+
encoder_attention_mask,
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
outputs = block(
|
568 |
+
hidden_states,
|
569 |
+
layer_past=layer_past,
|
570 |
+
attention_mask=attention_mask,
|
571 |
+
head_mask=head_mask[i],
|
572 |
+
encoder_hidden_states=encoder_hidden_states,
|
573 |
+
encoder_attention_mask=encoder_attention_mask,
|
574 |
+
use_cache=use_cache,
|
575 |
+
output_attentions=output_attentions,
|
576 |
+
)
|
577 |
+
|
578 |
+
hidden_states = outputs[0]
|
579 |
+
if use_cache is True:
|
580 |
+
presents = presents + (outputs[1],)
|
581 |
+
|
582 |
+
if output_attentions:
|
583 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
584 |
+
if self.config.add_cross_attention and self.add_cross_attention_by_layer:
|
585 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
586 |
+
|
587 |
+
hidden_states = self.ln_f(hidden_states)
|
588 |
+
|
589 |
+
hidden_states = hidden_states.view(output_shape)
|
590 |
+
# Add last hidden state
|
591 |
+
if output_hidden_states:
|
592 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
593 |
+
|
594 |
+
if not return_dict:
|
595 |
+
return tuple(
|
596 |
+
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if
|
597 |
+
v is not None)
|
598 |
+
|
599 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
600 |
+
last_hidden_state=hidden_states,
|
601 |
+
past_key_values=presents,
|
602 |
+
hidden_states=all_hidden_states,
|
603 |
+
attentions=all_self_attentions,
|
604 |
+
cross_attentions=all_cross_attentions,
|
605 |
+
)
|
606 |
+
|
607 |
+
|
608 |
+
# Adapted from transformers.models.codegen.modeling_codegen.CodeGenForCausalLM
|
609 |
+
class CodeT5pForCausalLM(CodeT5pPreTrainedModel):
|
610 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"]
|
611 |
+
|
612 |
+
def __init__(self, config):
|
613 |
+
super().__init__(config)
|
614 |
+
self.transformer = CodeT5pModel(config)
|
615 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
616 |
+
|
617 |
+
# Initialize weights and apply final processing
|
618 |
+
self.post_init()
|
619 |
+
|
620 |
+
def get_output_embeddings(self):
|
621 |
+
return self.lm_head
|
622 |
+
|
623 |
+
def set_output_embeddings(self, new_embeddings):
|
624 |
+
self.lm_head = new_embeddings
|
625 |
+
|
626 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
627 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
628 |
+
# only last token for inputs_ids if past is defined in kwargs
|
629 |
+
if past_key_values:
|
630 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
631 |
+
if token_type_ids is not None:
|
632 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
633 |
+
|
634 |
+
attention_mask = kwargs.get("attention_mask", None)
|
635 |
+
position_ids = kwargs.get("position_ids", None)
|
636 |
+
|
637 |
+
if attention_mask is not None and position_ids is None:
|
638 |
+
# create position_ids on the fly for batch generation
|
639 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
640 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
641 |
+
if past_key_values:
|
642 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
643 |
+
else:
|
644 |
+
position_ids = None
|
645 |
+
return {
|
646 |
+
"input_ids": input_ids,
|
647 |
+
"past_key_values": past_key_values,
|
648 |
+
"use_cache": kwargs.get("use_cache"),
|
649 |
+
"position_ids": position_ids,
|
650 |
+
"attention_mask": attention_mask,
|
651 |
+
"token_type_ids": token_type_ids,
|
652 |
+
}
|
653 |
+
|
654 |
+
def forward(
|
655 |
+
self,
|
656 |
+
input_ids: Optional[torch.LongTensor] = None,
|
657 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
658 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
659 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
660 |
+
position_ids: Optional[torch.LongTensor] = None,
|
661 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
662 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
663 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
664 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
665 |
+
labels: Optional[torch.LongTensor] = None,
|
666 |
+
use_cache: Optional[bool] = None,
|
667 |
+
output_attentions: Optional[bool] = None,
|
668 |
+
output_hidden_states: Optional[bool] = None,
|
669 |
+
return_dict: Optional[bool] = None,
|
670 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
671 |
+
r"""
|
672 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
673 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
674 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
675 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
676 |
+
"""
|
677 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
678 |
+
|
679 |
+
transformer_outputs = self.transformer(
|
680 |
+
input_ids,
|
681 |
+
past_key_values=past_key_values,
|
682 |
+
attention_mask=attention_mask,
|
683 |
+
token_type_ids=token_type_ids,
|
684 |
+
position_ids=position_ids,
|
685 |
+
head_mask=head_mask,
|
686 |
+
inputs_embeds=inputs_embeds,
|
687 |
+
encoder_hidden_states=encoder_hidden_states,
|
688 |
+
encoder_attention_mask=encoder_attention_mask,
|
689 |
+
use_cache=use_cache,
|
690 |
+
output_attentions=output_attentions,
|
691 |
+
output_hidden_states=output_hidden_states,
|
692 |
+
return_dict=return_dict,
|
693 |
+
)
|
694 |
+
hidden_states = transformer_outputs[0]
|
695 |
+
|
696 |
+
# make sure sampling in fp16 works correctly and
|
697 |
+
# compute loss in fp32 to match with mesh-tf version
|
698 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
699 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
700 |
+
|
701 |
+
loss = None
|
702 |
+
if labels is not None:
|
703 |
+
# Shift so that tokens < n predict n
|
704 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
705 |
+
shift_labels = labels[..., 1:].contiguous()
|
706 |
+
# Flatten the tokens
|
707 |
+
loss_fct = CrossEntropyLoss()
|
708 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
709 |
+
|
710 |
+
loss = loss.to(hidden_states.dtype)
|
711 |
+
|
712 |
+
if not return_dict:
|
713 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
714 |
+
return ((loss,) + output) if loss is not None else output
|
715 |
+
|
716 |
+
return CausalLMOutputWithCrossAttentions(
|
717 |
+
loss=loss,
|
718 |
+
logits=lm_logits,
|
719 |
+
past_key_values=transformer_outputs.past_key_values,
|
720 |
+
hidden_states=transformer_outputs.hidden_states,
|
721 |
+
attentions=transformer_outputs.attentions,
|
722 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
723 |
+
)
|
724 |
+
|
725 |
+
@staticmethod
|
726 |
+
def _reorder_cache(
|
727 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
728 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
729 |
+
"""
|
730 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
731 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
732 |
+
beam_idx at every generation step.
|
733 |
+
"""
|
734 |
+
return tuple(
|
735 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
736 |
+
for layer_past in past_key_values
|
737 |
+
)
|
738 |
+
|
739 |
+
|
740 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
741 |
+
"""
|
742 |
+
Shift input ids one token to the right.
|
743 |
+
"""
|
744 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
745 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
746 |
+
if decoder_start_token_id is None:
|
747 |
+
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
|
748 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
749 |
+
|
750 |
+
if pad_token_id is None:
|
751 |
+
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
|
752 |
+
# replace possible -100 values in labels by `pad_token_id`
|
753 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
754 |
+
|
755 |
+
return shifted_input_ids
|
756 |
+
|
757 |
+
|
758 |
+
# Adapted from transformers.models.encoder_decoder.modeling_encoder_decoder.EncoderDecoderModel
|
759 |
+
class CodeT5pEncoderDecoderModel(PreTrainedModel):
|
760 |
+
config_class = CodeT5pConfig
|
761 |
+
|
762 |
+
def __init__(
|
763 |
+
self,
|
764 |
+
config: Optional[PretrainedConfig] = None,
|
765 |
+
encoder: Optional[PreTrainedModel] = None,
|
766 |
+
decoder: Optional[PreTrainedModel] = None,
|
767 |
+
):
|
768 |
+
if config is None and (encoder is None or decoder is None):
|
769 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
770 |
+
if config is None:
|
771 |
+
config = CodeT5pConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
772 |
+
else:
|
773 |
+
if not isinstance(config, self.config_class):
|
774 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
775 |
+
|
776 |
+
if config.decoder.cross_attention_hidden_size is not None:
|
777 |
+
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
|
778 |
+
raise ValueError(
|
779 |
+
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
|
780 |
+
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
|
781 |
+
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
|
782 |
+
" `config.encoder.hidden_size`."
|
783 |
+
)
|
784 |
+
|
785 |
+
# initialize with config
|
786 |
+
super().__init__(config)
|
787 |
+
|
788 |
+
if encoder is None:
|
789 |
+
encoder = CodeT5pModel(config.encoder)
|
790 |
+
|
791 |
+
if decoder is None:
|
792 |
+
decoder = CodeT5pForCausalLM(config.decoder)
|
793 |
+
|
794 |
+
self.encoder = encoder
|
795 |
+
self.decoder = decoder
|
796 |
+
|
797 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
798 |
+
logger.warning(
|
799 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
800 |
+
f" {self.config.encoder}"
|
801 |
+
)
|
802 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
803 |
+
logger.warning(
|
804 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
805 |
+
f" {self.config.decoder}"
|
806 |
+
)
|
807 |
+
|
808 |
+
# make sure that the individual model's config refers to the shared config
|
809 |
+
# so that the updates to the config will be synced
|
810 |
+
self.encoder.config = self.config.encoder
|
811 |
+
self.decoder.config = self.config.decoder
|
812 |
+
|
813 |
+
# encoder outputs might need to be projected to different dimension for decoder
|
814 |
+
if (
|
815 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
816 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
817 |
+
):
|
818 |
+
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
|
819 |
+
|
820 |
+
if self.encoder.get_output_embeddings() is not None:
|
821 |
+
raise ValueError(
|
822 |
+
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
|
823 |
+
)
|
824 |
+
# tie encoder, decoder weights if config set accordingly
|
825 |
+
self.tie_weights()
|
826 |
+
|
827 |
+
def tie_weights(self):
|
828 |
+
# tie encoder & decoder if needed
|
829 |
+
if self.config.tie_encoder_decoder:
|
830 |
+
# tie encoder and decoder base model
|
831 |
+
decoder_base_model_prefix = self.decoder.base_model_prefix
|
832 |
+
self._tie_encoder_decoder_weights(
|
833 |
+
self.encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix
|
834 |
+
)
|
835 |
+
|
836 |
+
def get_encoder(self):
|
837 |
+
return self.encoder
|
838 |
+
|
839 |
+
def get_decoder(self):
|
840 |
+
return self.decoder
|
841 |
+
|
842 |
+
def get_input_embeddings(self):
|
843 |
+
return self.encoder.get_input_embeddings()
|
844 |
+
|
845 |
+
def get_output_embeddings(self):
|
846 |
+
return self.decoder.get_output_embeddings()
|
847 |
+
|
848 |
+
def set_output_embeddings(self, new_embeddings):
|
849 |
+
return self.decoder.set_output_embeddings(new_embeddings)
|
850 |
+
|
851 |
+
@classmethod
|
852 |
+
def from_pretrained(cls, *args, **kwargs):
|
853 |
+
# At the moment fast initialization is not supported for composite models
|
854 |
+
if kwargs.get("_fast_init", False):
|
855 |
+
logger.warning(
|
856 |
+
"Fast initialization is currently not supported for EncoderDecoderModel. "
|
857 |
+
"Falling back to slow initialization..."
|
858 |
+
)
|
859 |
+
kwargs["_fast_init"] = False
|
860 |
+
return super().from_pretrained(*args, **kwargs)
|
861 |
+
|
862 |
+
def forward(
|
863 |
+
self,
|
864 |
+
input_ids: Optional[torch.LongTensor] = None,
|
865 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
866 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
867 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
868 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
869 |
+
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
|
870 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
871 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
872 |
+
labels: Optional[torch.LongTensor] = None,
|
873 |
+
use_cache: Optional[bool] = None,
|
874 |
+
output_attentions: Optional[bool] = None,
|
875 |
+
output_hidden_states: Optional[bool] = None,
|
876 |
+
return_dict: Optional[bool] = None,
|
877 |
+
**kwargs,
|
878 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
879 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
880 |
+
|
881 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
882 |
+
|
883 |
+
kwargs_decoder = {
|
884 |
+
argument[len("decoder_"):]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
885 |
+
}
|
886 |
+
|
887 |
+
if encoder_outputs is None:
|
888 |
+
encoder_outputs = self.encoder(
|
889 |
+
input_ids=input_ids,
|
890 |
+
attention_mask=attention_mask,
|
891 |
+
inputs_embeds=inputs_embeds,
|
892 |
+
output_attentions=output_attentions,
|
893 |
+
output_hidden_states=output_hidden_states,
|
894 |
+
return_dict=return_dict,
|
895 |
+
**kwargs_encoder,
|
896 |
+
)
|
897 |
+
elif isinstance(encoder_outputs, tuple):
|
898 |
+
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
899 |
+
|
900 |
+
encoder_hidden_states = encoder_outputs[0]
|
901 |
+
|
902 |
+
# optionally project encoder_hidden_states
|
903 |
+
if (
|
904 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
905 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
906 |
+
):
|
907 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
908 |
+
|
909 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
910 |
+
decoder_input_ids = shift_tokens_right(
|
911 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
912 |
+
)
|
913 |
+
|
914 |
+
# Decode
|
915 |
+
decoder_outputs = self.decoder(
|
916 |
+
input_ids=decoder_input_ids,
|
917 |
+
attention_mask=decoder_attention_mask,
|
918 |
+
encoder_hidden_states=encoder_hidden_states,
|
919 |
+
encoder_attention_mask=attention_mask,
|
920 |
+
inputs_embeds=decoder_inputs_embeds,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
output_hidden_states=output_hidden_states,
|
923 |
+
use_cache=use_cache,
|
924 |
+
past_key_values=past_key_values,
|
925 |
+
return_dict=return_dict,
|
926 |
+
**kwargs_decoder,
|
927 |
+
)
|
928 |
+
|
929 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
930 |
+
loss = None
|
931 |
+
if labels is not None:
|
932 |
+
# warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
933 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
934 |
+
loss_fct = CrossEntropyLoss()
|
935 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
|
936 |
+
|
937 |
+
if not return_dict:
|
938 |
+
if loss is not None:
|
939 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
940 |
+
else:
|
941 |
+
return decoder_outputs + encoder_outputs
|
942 |
+
|
943 |
+
return Seq2SeqLMOutput(
|
944 |
+
loss=loss,
|
945 |
+
logits=decoder_outputs.logits,
|
946 |
+
past_key_values=decoder_outputs.past_key_values,
|
947 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
948 |
+
decoder_attentions=decoder_outputs.attentions,
|
949 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
950 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
951 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
952 |
+
encoder_attentions=encoder_outputs.attentions,
|
953 |
+
)
|
954 |
+
|
955 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
956 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
957 |
+
|
958 |
+
def prepare_inputs_for_generation(
|
959 |
+
self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
960 |
+
):
|
961 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past=past)
|
962 |
+
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
|
963 |
+
input_dict = {
|
964 |
+
"attention_mask": attention_mask,
|
965 |
+
"decoder_attention_mask": decoder_attention_mask,
|
966 |
+
"decoder_input_ids": decoder_inputs["input_ids"],
|
967 |
+
"encoder_outputs": encoder_outputs,
|
968 |
+
"past_key_values": decoder_inputs["past_key_values"],
|
969 |
+
"use_cache": use_cache,
|
970 |
+
}
|
971 |
+
return input_dict
|
972 |
+
|
973 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
974 |
+
raise NotImplementedError(
|
975 |
+
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
|
976 |
+
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
|
977 |
+
" model.decoder.resize_token_embeddings(...))"
|
978 |
+
)
|
979 |
+
|
980 |
+
def _reorder_cache(self, past, beam_idx):
|
981 |
+
# apply decoder cache reordering here
|
982 |
+
return self.decoder._reorder_cache(past, beam_idx)
|