Text Generation
Safetensors
PyTorch
English
mixtral
function-calling
LLM Agent
tool-use
mistral
conversational
File size: 20,186 Bytes
1b6ae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22baf35
 
 
f412807
22baf35
 
1b6ae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5142cd9
 
 
 
 
 
 
 
 
1b6ae43
 
 
 
 
 
 
 
 
 
8b49d0b
 
 
 
1b6ae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22baf35
1b6ae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22baf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b6ae43
 
 
 
22baf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b6ae43
 
22baf35
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
---
extra_gated_heading: >-
  Acknowledge to follow corresponding license to access the
  repository
extra_gated_button_content: Agree and access repository
extra_gated_fields:
  First Name: text
  Last Name: text
  Country: country
  Affiliation: text
license: cc-by-nc-4.0
datasets:
- Salesforce/xlam-function-calling-60k
language:
- en
pipeline_tag: text-generation
tags:
- function-calling
- LLM Agent
- tool-use
- mistral
- pytorch
---

<p align="center">
<img width="500px" alt="xLAM" src="https://huggingface.co/datasets/jianguozhang/logos/resolve/main/xlam-no-background.png">
</p>
<p align="center">
  <a href="https://www.salesforceairesearch.com/projects/xlam-large-action-models">[Homepage]</a>  |  
  <a href="https://arxiv.org/abs/2409.03215">[Paper]</a> | 
  <a href="https://github.com/SalesforceAIResearch/xLAM">[Github]</a> |
  <a href="https://discord.gg/tysWwgZyQ2">[Discord]</a> | 
  <a href="https://blog.salesforceairesearch.com/large-action-model-ai-agent/">[Blog]</a> | 
  <a href="https://huggingface.co/spaces/Tonic/Salesforce-Xlam-7b-r">[Community Demo]</a>
</p>
<hr>


Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
**The model release is exclusively for research purposes. A new and enhanced version of xLAM will soon be available exclusively to customers on our Platform.**

## Table of Contents
- [Model Series](#model-series)
- [Repository Overview](#repository-overview)
- [Benchmark Results](#benchmark-results)
- [Usage](#usage)
  - [Basic Usage with Huggingface](#basic-usage-with-huggingface)
- [License](#license)
- [Citation](#citation)

## Model Series

We provide a series of xLAMs in different sizes to cater to various applications, including those optimized for function-calling and general agent applications:

| Model                  | # Total Params | Context Length |Release Date | Category | Download Model  | Download GGUF files |
|------------------------|----------------|----------------|----|----|----------------|----------|
| xLAM-7b-r           | 7.24B          | 32k            | Sep. 5, 2024|General,  Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-7b-r) | -- |
| xLAM-8x7b-r           | 46.7B          | 32k           | Sep. 5, 2024|General,  Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-8x7b-r) | -- |
| xLAM-8x22b-r           | 141B          | 64k           | Sep. 5, 2024|General,  Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-8x22b-r) | -- |
| xLAM-1b-fc-r           | 1.35B          | 16k           | July 17, 2024 | Function-calling| [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-1b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-1b-fc-r-gguf) |
| xLAM-7b-fc-r           | 6.91B          | 4k            | July 17, 2024| Function-calling| [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) |
| xLAM-v0.1-r           | 46.7B          | 32k            | Mar. 18, 2024 |General,  Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-v0.1-r) | -- |







For our Function-calling series (more details are included at [here](https://huggingface.co/Salesforce/xLAM-7b-fc-r)), we also provide their quantized [GGUF](https://huggingface.co/docs/hub/en/gguf) files for efficient deployment and execution. GGUF is a file format designed to efficiently store and load large language models, making GGUF ideal for running AI models on local devices with limited resources, enabling offline functionality and enhanced privacy.

For more details, check our [GitHub](https://github.com/SalesforceAIResearch/xLAM) and [paper]().

## Check Latest Examples on Interaction with xLAM

Here is the [latest examples and tokenizer](https://huggingface.co/Salesforce/xLAM-8x22b-r/blob/main/example/xlam_chat_template_examples_11_21.ipynb) on interacting with xLAM models. 


## Repository Overview

This repository is about the general tool use series. For more specialized function calling models, please take a look into our `fc` series [here](https://huggingface.co/Salesforce/xLAM-7b-fc-r).

The instructions will guide you through the setup, usage, and integration of our model series with HuggingFace.
### Framework Versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1

## Usage

### Basic Usage with Huggingface

To use the model from Huggingface, please first install the `transformers` library:
```bash
pip install transformers>=4.41.0
```

Please note that, our model works best with our provided prompt format. 
It allows us to extract JSON output that is similar to the [function-calling mode of ChatGPT](https://platform.openai.com/docs/guides/function-calling).

We use the following example to illustrate how to use our model for 1) single-turn use case, and 2) multi-turn use case

#### 1. Single-turn use case

````python
import json
import torch 
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.random.manual_seed(0) 

model_name = "Salesforce/xLAM-7b-r"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name) 

# Please use our provided instruction prompt for best performance
task_instruction = """
Based on the previous context and API request history, generate an API request or a response as an AI assistant.""".strip()

format_instruction = """
The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make 
tool_calls an empty list "[]".
```
{"thought": "the thought process, or an empty string", "tool_calls": [{"name": "api_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}]}
```
""".strip()

# Define the input query and available tools
query = "What's the weather like in New York in fahrenheit?"

get_weather_api = {
    "name": "get_weather",
    "description": "Get the current weather for a location",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, New York"
            },
            "unit": {
                "type": "string",
                "enum": ["celsius", "fahrenheit"],
                "description": "The unit of temperature to return"
            }
        },
        "required": ["location"]
    }
}

search_api = {
    "name": "search",
    "description": "Search for information on the internet",
    "parameters": {
        "type": "object",
        "properties": {
            "query": {
                "type": "string",
                "description": "The search query, e.g. 'latest news on AI'"
            }
        },
        "required": ["query"]
    }
}

openai_format_tools = [get_weather_api, search_api]

# Helper function to convert openai format tools to our more concise xLAM format
def convert_to_xlam_tool(tools):
    ''''''
    if isinstance(tools, dict):
        return {
            "name": tools["name"],
            "description": tools["description"],
            "parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
        }
    elif isinstance(tools, list):
        return [convert_to_xlam_tool(tool) for tool in tools]
    else:
        return tools

def build_conversation_history_prompt(conversation_history: str):
    parsed_history = []
    for step_data in conversation_history:
        parsed_history.append({
            "step_id": step_data["step_id"],
            "thought": step_data["thought"],
            "tool_calls": step_data["tool_calls"],
            "next_observation": step_data["next_observation"],
            "user_input": step_data['user_input']
        })
        
    history_string = json.dumps(parsed_history)
    return f"\n[BEGIN OF HISTORY STEPS]\n{history_string}\n[END OF HISTORY STEPS]\n"
    
    
# Helper function to build the input prompt for our model
def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
    prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
    prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(xlam_format_tools)}\n[END OF AVAILABLE TOOLS]\n\n"
    prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
    prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
    
    if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)
    return prompt
    
# Build the input and start the inference
xlam_format_tools = convert_to_xlam_tool(openai_format_tools)

conversation_history = []
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)

messages=[
    { 'role': 'user', 'content': content}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
````

Then you should be able to see the following output string in JSON format:

```shell
{"thought": "I need to get the current weather for New York in fahrenheit.", "tool_calls": [{"name": "get_weather", "arguments": {"location": "New York", "unit": "fahrenheit"}}]}
```

#### 2. Multi-turn use case

We also support multi-turn interaction with our model series. Here is the example of next round of interaction from the above example:

````python
def parse_agent_action(agent_action: str):
    """
    Given an agent's action, parse it to add to conversation history
    """
    try: parsed_agent_action_json = json.loads(agent_action)
    except: return "", []
    
    if "thought" not in parsed_agent_action_json.keys(): thought = ""
    else: thought = parsed_agent_action_json["thought"]
    
    if "tool_calls" not in parsed_agent_action_json.keys(): tool_calls = []
    else: tool_calls = parsed_agent_action_json["tool_calls"]
    
    return thought, tool_calls

def update_conversation_history(conversation_history: list, agent_action: str, environment_response: str, user_input: str):
    """
    Update the conversation history list based on the new agent_action, environment_response, and/or user_input
    """
    thought, tool_calls = parse_agent_action(agent_action)
    new_step_data = {
        "step_id": len(conversation_history) + 1,
        "thought": thought,
        "tool_calls": tool_calls,
        "step_id": len(conversation_history),
        "next_observation": environment_response,
        "user_input": user_input,
    }
    
    conversation_history.append(new_step_data)

def get_environment_response(agent_action: str):
    """
    Get the environment response for the agent_action
    """
    # TODO: add custom implementation here
    error_message, response_message = "", ""
    return {"error": error_message, "response": response_message}

# ------------- before here are the steps to get agent_response from the example above ----------

# 1. get the next state after agent's response:
#   The next 2 lines are examples of getting environment response and user_input.
#   It is depended on particular usage, we can have either one or both of those.
environment_response = get_environment_response(agent_action)
user_input = "Now, search on the Internet for cute puppies"

# 2. after we got environment_response and (or) user_input, we want to add to our conversation history
update_conversation_history(conversation_history, agent_action, environment_response, user_input)

# 3. we now can build the prompt
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)

# 4. Now, we just retrieve the inputs for the LLM
messages=[
    { 'role': 'user', 'content': content}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

# 5. Generate the outputs & decode
#   tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
````

This would be the corresponding output:
```shell
{"thought": "I need to get the current weather for New York in fahrenheit.", "tool_calls": [{"name": "get_weather", "arguments": {"location": "New York", "unit": "fahrenheit"}}]}
```

We highly recommend to use our provided prompt format and helper functions to yield the best function-calling performance of our model.

#### Example multi-turn prompt and output

Prompt:
````json
[BEGIN OF TASK INSTRUCTION]
Based on the previous context and API request history, generate an API request or a response as an AI assistant. 
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
[
    {
        "name": "get_fire_info",
        "description": "Query the latest wildfire information",
        "parameters": {
            "location": {
                "type": "string",
                "description": "Location of the wildfire, for example: 'California'",
                "required": true,
                "format": "free"
            },
            "radius": {
                "type": "number",
                "description": "The radius (in miles) around the location where the wildfire is occurring, for example: 10",
                "required": false,
                "format": "free"
            }
        }
    },
    {
        "name": "get_hurricane_info",
        "description": "Query the latest hurricane information",
        "parameters": {
            "name": {
                "type": "string",
                "description": "Name of the hurricane, for example: 'Irma'",
                "required": true,
                "format": "free"
            }
        }
    },
    {
        "name": "get_earthquake_info",
        "description": "Query the latest earthquake information",
        "parameters": {
            "magnitude": {
                "type": "number",
                "description": "The minimum magnitude of the earthquake that needs to be queried.",
                "required": false,
                "format": "free"
            },
            "location": {
                "type": "string",
                "description": "Location of the earthquake, for example: 'California'",
                "required": false,
                "format": "free"
            }
        }
    }
]
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
Your output should be in the JSON format, which specifies a list of function calls. The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
```{"thought": "the thought process, or an empty string", "tool_calls": [{"name": "api_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}]}```
[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
User: Can you give me the latest information on the wildfires occurring in California?
[END OF QUERY]

[BEGIN OF HISTORY STEPS]
[
    {
        "thought": "Sure, what is the radius (in miles) around the location of the wildfire?",
        "tool_calls": [],
        "step_id": 1,
        "next_observation": "",
        "user_input": "User: Let me think... 50 miles."
    },
    {
        "thought": "",
        "tool_calls": [
            {
                "name": "get_fire_info",
                "arguments": {
                    "location": "California",
                    "radius": 50
                }
            }
        ],
        "step_id": 2,
        "next_observation": [
            {
                "location": "Los Angeles",
                "acres_burned": 1500,
                "status": "contained"
            },
            {
                "location": "San Diego",
                "acres_burned": 12000,
                "status": "active"
            }
        ]
    },
    {
        "thought": "Based on the latest information, there are wildfires in Los Angeles and San Diego. The wildfire in Los Angeles has burned 1,500 acres and is contained, while the wildfire in San Diego has burned 12,000 acres and is still active.",
        "tool_calls": [],
        "step_id": 3,
        "next_observation": "",
        "user_input": "User: Can you tell me about the latest earthquake?"
    }
]

[END OF HISTORY STEPS]
````

Output:
````json
{"thought": "", "tool_calls": [{"name": "get_earthquake_info", "arguments": {"location": "California"}}]}
````

## Benchmark Results
Note: **Bold** and <u>Underline</u> results denote the best result and the second best result for Success Rate, respectively.

### Berkeley Function-Calling Leaderboard (BFCL)
![xlam-bfcl](media/xlam-bfcl.png)
*Table 1: Performance comparison on BFCL-v2 leaderboard (cutoff date 09/03/2024). The rank is based on the overall accuracy, which is a weighted average of different evaluation categories. "FC" stands for function-calling mode in contrast to using a customized "prompt" to extract the function calls.*

### Webshop and ToolQuery
![xlam-webshop_toolquery](media/xlam-webshop_toolquery.png)
*Table 2: Testing results on Webshop and ToolQuery. Bold and Underline results denote the best result and the second best result for Success Rate, respectively.*

### Unified ToolQuery
![xlam-unified_toolquery](media/xlam-unified_toolquery.png)
*Table 3: Testing results on ToolQuery-Unified. Bold and Underline results denote the best result and the second best result for Success Rate, respectively. Values in brackets indicate corresponding performance on ToolQuery*

### ToolBench
![xlam-toolbench](media/xlam-toolbench.png)
*Table 4: Pass Rate on ToolBench on three distinct scenarios. Bold and Underline results denote the best result and the second best result for each setting, respectively. The results for xLAM-8x22b-r are unavailable due to the ToolBench server being down between 07/28/2024 and our evaluation cutoff date 09/03/2024.*

## License
The model is distributed under the CC-BY-NC-4.0 license.

## Citation

If you find this repo helpful, please consider to cite our papers:

```bibtex
@article{zhang2024xlam,
  title={xLAM: A Family of Large Action Models to Empower AI Agent Systems},
  author={Zhang, Jianguo and Lan, Tian and Zhu, Ming and Liu, Zuxin and Hoang, Thai and Kokane, Shirley and Yao, Weiran and Tan, Juntao and Prabhakar, Akshara and Chen, Haolin and others},
  journal={arXiv preprint arXiv:2409.03215},
  year={2024}
}
```

```bibtex
@article{liu2024apigen,
  title={Apigen: Automated pipeline for generating verifiable and diverse function-calling datasets},
  author={Liu, Zuxin and Hoang, Thai and Zhang, Jianguo and Zhu, Ming and Lan, Tian and Kokane, Shirley and Tan, Juntao and Yao, Weiran and Liu, Zhiwei and Feng, Yihao and others},
  journal={arXiv preprint arXiv:2406.18518},
  year={2024}
}
```

```bibtex
@article{zhang2024agentohana,
  title={AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning},
  author={Zhang, Jianguo and Lan, Tian and Murthy, Rithesh and Liu, Zhiwei and Yao, Weiran and Tan, Juntao and Hoang, Thai and Yang, Liangwei and Feng, Yihao and Liu, Zuxin and others},
  journal={arXiv preprint arXiv:2402.15506},
  year={2024}
}
```