File size: 3,106 Bytes
c2becfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: cc-by-nc-4.0
language:
- en
pipeline_tag: image-text-to-text
---
# Model description
BLIP-3 consists of 3 models: a CLIP-like image encoder, a VL connector, and a large language model.
# Direct Use and Downstream Use
# Bias, Risks, Limitations, and Ethical Considerations
# How to use
```python
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor, StoppingCriteria
import torch
import requests
from PIL import Image
# define the prompt template
def apply_prompt_template(prompt):
s = (
'<|system|>\nA chat between a curious user and an artificial intelligence assistant. '
"The assistant gives helpful, detailed, and polite answers to the user's questions.<|end|>\n"
f'<|user|>\n<image>\n{prompt}<|end|>\n<|assistant|>\n'
)
return s
class EosListStoppingCriteria(StoppingCriteria):
def __init__(self, eos_sequence = [32007]):
self.eos_sequence = eos_sequence
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
return self.eos_sequence in last_ids
# load models
model_name_or_path = "Salesforce/blip3-phi2-r"
model = AutoModelForVision2Seq.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("./", trust_remote_code=True, use_fast=True, legacy=False)
image_processor = AutoImageProcessor.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = model.update_special_tokens(tokenizer)
# craft a test sample
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
query = "how many dogs are in the picture?"
model = model.cuda()
inputs = image_processor([raw_image], return_tensors="pt", image_aspect_ratio='anyres')
prompt = apply_prompt_template(query)
language_inputs = tokenizer([prompt], return_tensors="pt")
inputs.update(language_inputs)
inputs = {name: tensor.cuda() for name, tensor in inputs.items()}
generated_text = model.generate(**inputs, image_size=[img.size],
pad_token_id=tokenizer.pad_token_id,
do_sample=False, max_new_tokens=768, top_p=None, num_beams=1,
stopping_criteria = [EosListStoppingCriteria()],
)
prediction = tokenizer.decode(generated_text[0], skip_special_tokens=True)
print("==> prediciton: ", prediction)
# output: ==> prediciton: There is one dog in the picture.
```
# License
Our code and weights are released under the Creative Commons Attribution Non Commercial 4.0 [LICENSE](LICENSE.txt).
# Troubleshoot
1. If you missing any packages, please consider the followings
```
pip install -U "transformers==4.40.0" --upgrade
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
pip install open_clip_torch==2.24.0
pip install einops
pip install einops-exts
``` |