xgen-mm-phi3-mini-instruct-r-v1 / image_processing_blip_3.py
UncleFish's picture
init release
92b6d07
import random
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torchvision.transforms.functional as F
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
CenterCrop, ColorJitter, Grayscale
import numbers
import torch
import ast
import math
from PIL import Image
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_utils import ImageInput
from transformers.utils import TensorType
class Blip3ImageProcessor(BaseImageProcessor):
def __init__(
self,
do_resize: bool = True,
resize_mode: str = "squash",
interpolation_mode: str = "bicubic",
size: Union[Tuple[int, int], List[int]] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resize_mode = resize_mode
self.interpolation_mode = interpolation_mode
self.size = size if size is not None else (378, 378)
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
@classmethod
def resize(cls, image_size, resize_mode, interpolation='bicubic', fill_color=0):
interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC
if resize_mode == 'longest':
transforms = [
ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1),
CenterCropOrPad(image_size, fill=fill_color)
]
elif resize_mode == 'squash':
if isinstance(image_size, int):
image_size = (image_size, image_size)
transforms = [
Resize(image_size, interpolation=interpolation_mode),
]
else:
assert resize_mode == 'shortest'
if not isinstance(image_size, (tuple, list)):
image_size = (image_size, image_size)
if image_size[0] == image_size[1]:
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
transforms = [
Resize(image_size[0], interpolation=interpolation_mode)
]
else:
# resize shortest edge to matching target dim for non-square target
transforms = [ResizeKeepRatio(image_size)]
transforms += [CenterCrop(image_size)]
return transforms
@classmethod
def convert_rgb(cls, image):
return image.convert("RGB")
def _preprocess(self,
images: ImageInput
) -> torch.Tensor:
transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode)
transforms.extend([
self.convert_rgb,
ToTensor(),
Normalize(mean=self.image_mean, std=self.image_std)
])
composed_transforms = Compose(transforms)
images_tensor = composed_transforms(images)
return images_tensor
def preprocess(self,
images: ImageInput,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs) -> BatchFeature:
if 'image_aspect_ratio' in kwargs:
image_aspect_ratio = kwargs['image_aspect_ratio']
else:
image_aspect_ratio = 'pad'
new_images = []
if image_aspect_ratio == 'pad':
for image in images:
image = self._preprocess(image)
new_images.append(image)
else:
if isinstance(self.size, (tuple, list)):
base_img_size = self.size[0]
else:
raise ValueError("size should be list or tuple")
for image in images:
image = process_anyres_image(image, self._preprocess, self.size,
[
[base_img_size,base_img_size*2],
[base_img_size*2,base_img_size],
[base_img_size*2,base_img_size*2],
[base_img_size*3,base_img_size],
[base_img_size,base_img_size*3]
])
new_images.append(image)
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
if image_aspect_ratio == 'pad':
new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(0).unsqueeze(0)}, tensor_type=return_tensors)
else:
new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(0)}, tensor_type=return_tensors)
return new_images
# def preprocess(self,
# images: ImageInput,
# return_tensors: Optional[Union[str, TensorType]] = None,
# **kwargs) -> BatchFeature:
# transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode)
# transforms.extend([
# self.convert_rgb,
# ToTensor(),
# Normalize(mean=self.image_mean, std=self.image_std)
# ])
# composed_transforms = Compose(transforms)
# images_tensor = composed_transforms(images).unsqueeze(0).unsqueeze(1).unsqueeze(0)
# encoded_outputs = BatchFeature(data={"pixel_values": images_tensor}, tensor_type=return_tensors)
# return encoded_outputs
class ResizeKeepRatio:
""" Resize and Keep Ratio
Copy & paste from `timm`
"""
def __init__(
self,
size,
longest=0.,
interpolation=InterpolationMode.BICUBIC,
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
self.interpolation = interpolation
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
self.random_scale_prob = random_scale_prob
self.random_scale_range = random_scale_range
self.random_aspect_prob = random_aspect_prob
self.random_aspect_range = random_aspect_range
@staticmethod
def get_params(
img,
target_size,
longest,
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
"""Get parameters
"""
source_size = img.size[::-1] # h, w
h, w = source_size
target_h, target_w = target_size
ratio_h = h / target_h
ratio_w = w / target_w
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
if random_scale_prob > 0 and random.random() < random_scale_prob:
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
ratio_factor = (ratio_factor, ratio_factor)
else:
ratio_factor = (1., 1.)
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1])
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
return size
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
"""
size = self.get_params(
img, self.size, self.longest,
self.random_scale_prob, self.random_scale_range,
self.random_aspect_prob, self.random_aspect_range
)
img = F.resize(img, size, self.interpolation)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += f', interpolation={self.interpolation})'
format_string += f', longest={self.longest:.3f})'
return format_string
def _setup_size(size, error_msg):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
return size
def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor:
"""Center crops and/or pads the given image.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
img (PIL Image or Tensor): Image to be cropped.
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
it is used for both directions.
fill (int, Tuple[int]): Padding color
Returns:
PIL Image or Tensor: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
output_size = (output_size[0], output_size[0])
_, image_height, image_width = F.get_dimensions(img)
crop_height, crop_width = output_size
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = F.pad(img, padding_ltrb, fill=fill)
_, image_height, image_width = F.get_dimensions(img)
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
class CenterCropOrPad(torch.nn.Module):
"""Crops the given image at the center.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
"""
def __init__(self, size, fill=0):
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
self.fill = fill
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
return center_crop_or_pad(img, self.size, fill=self.fill)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
def process_anyres_image(image, processor, processor_size, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
processor_size (tuple, list): The size of the image processor.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# FIXME: determine grid_pinpoints from image sizes.
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
# processor_size = processor.transforms[0].size
patches = divide_to_patches(image_padded, processor_size[0])
image_original_resize = image.resize((processor_size[0], processor_size[0]))
image_patches = [image_original_resize] + patches
image_patches = [processor(image_patch)
for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches