--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-uncased-Federal-Regulations results: [] --- # bert-base-uncased-Federal-Regulations This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6193 - Accuracy: 0.7332 - Precision: 0.7510 - Recall: 0.7332 - F1: 0.7394 - Roc Auc: 0.7821 - Confusion Matrix: [[2590, 795], [498, 963]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | Confusion Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|:---------------------------:| | 0.5846 | 1.0 | 600 | 0.6114 | 0.6620 | 0.7393 | 0.6620 | 0.6759 | 0.7668 | [[2092, 1293], [345, 1116]] | | 0.5123 | 2.0 | 1200 | 0.5976 | 0.7210 | 0.7535 | 0.7210 | 0.7301 | 0.7848 | [[2465, 920], [432, 1029]] | | 0.4449 | 3.0 | 1800 | 0.6193 | 0.7332 | 0.7510 | 0.7332 | 0.7394 | 0.7821 | [[2590, 795], [498, 963]] | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3